We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
Broadband frequency-tripling pulses with high energy are attractive for scientific research, such as inertial confinement fusion, but are difficult to scale up. Third-harmonic generation via nonlinear frequency conversion, however, remains a trade-off between bandwidth and conversion efficiency. Based on gradient deuterium deuterated potassium dihydrogen phosphate (KDxH2-xPO4, DKDP) crystal, here we report the generation of frequency-tripling pulses by rapid adiabatic passage with a low-coherence laser driver facility. The efficiency dependence on the phase-matching angle in a Type-II configuration is studied. We attained an output at 352 nm with a bandwidth of 4.4 THz and an efficiency of 36%. These results, to the best of our knowledge, represent the first experimental demonstration of gradient deuterium DKDP crystal in obtaining frequency-tripling pulses. Our research paves a new way for developing high-efficiency, large-bandwidth frequency-tripling technology.
Background: Data on antimicrobial use at the national level is crucial to establish domestic antimicrobial stewardship policies and enable medical institutions to benchmark against each other. This study aimed to analyze antimicrobial use in Korean hospitals. Methods: We investigated the antimicrobials prescribed in Korean hospitals between 2018 and 2021, using data from the Health Insurance Review and Assessment. Primary care hospitals (PCHs), secondary care hospitals (SCHs), and tertiary care hospitals (TCHs) were included in this analysis. Antimicrobials were categorized according to the Korea National Antimicrobial Use Analysis System (KONAS) classification, which is suitable for measuring antimicrobial use in Korean hospitals. Results: Out of more than 1,900 hospitals, PCHs and TCHs represented the largest and lowest percentage of hospitals, respectively. The most frequently prescribed antimicrobial in 2021 was piperacillin/β-lactamase inhibitor (9.3%) in TCHs, ceftriaxone (11.0%) in SCHs, and cefazedone (18.9%) in PCHs. Between 2018 and 2021, the most used antimicrobial class according to the KONAS classification was ‘broad-spectrum antibacterial agents predominantly used for community-acquired infections’ in TCHs and SCHs, and 'narrow spectrum beta-lactam agents' in PCH. Total consumption of antimicrobials has decreased from 951.7 to 929.9 days of therapy (DOT)/1,000 patient-days in TCHs and from 817.8 to 752.2 DOT/1,000 patient-days in SCHs during study period, but not in PCHs (from 504.3 to 527.2 DOT/1,000 patient-days). Moreover, in 2021, while use of reserve antimicrobials has decreased from 13.6 to 10.7 DOT/1,000 patient-days in TCHs and from 4.6 to 3.3 DOT/1,000 patient-days in SCHs, it has increased from 0.7 to 0.8 DOT/1,000 patient-days in PCHs. Conclusion: This study confirms that antimicrobial use differs by hospital type in Korea. Recent increases of use of antimicrobials, including reserve antimicrobials, in PCHs reflect the challenges that must be addressed.
The damage characteristics of fused silica were investigated under low-temporal coherence light (LTCL). It was found that the laser-induced damage threshold (LIDT) of fused silica for the LTCL was lower than that of the single longitudinal mode pulse laser, and for the LTCLs, the LIDTs decrease with the increasing of laser bandwidth, which is not consistent with the temporal spike intensity. This is due to the nonlinear self-focusing effect and multi-pulse accumulation effect. The specific reasons were analyzed based on theoretical simulation and experimental study. This research work is helpful and of great significance for the construction of high-power LTCL devices.
Although the cardiovascular benefits of an increased urinary potassium excretion have been suggested, little is known about the potential cardiac association of urinary potassium excretion in patients with chronic kidney disease. In addition, whether the cardiac association of urinary potassium excretion was mediated by serum potassium levels has not been studied yet. We reviewed the data of 1633 patients from a large-scale multicentre prospective Korean study (2011–2016). Spot urinary potassium to creatinine ratio was used as a surrogate for urinary potassium excretion. Cardiac injury was defined as a high-sensitivity troponin T ≥ 14 ng/l. OR and 95 % (CI for cardiac injury were calculated using logistic regression analyses. Of 1633 patients, the mean spot urinary potassium to creatinine ratio was 49·5 (sd 22·6) mmol/g Cr and the overall prevalence of cardiac injury was 33·9 %. Although serum potassium levels were not associated with cardiac injury, per 10 mmol/g Cr increase in the spot urinary potassium to creatinine ratio was associated with decreased odds of cardiac injury: OR 0·917 (95 % CI 0·841, 0·998), P = 0·047) in multivariate logistic regression analysis. In mediation analysis, approximately 6·4 % of the relationship between spot urinary potassium to creatinine ratio and cardiac injury was mediated by serum potassium levels, which was not statistically significant (P = 0·368). Higher urinary potassium excretion was associated with lower odds of cardiac injury, which was not mediated by serum potassium levels.
Computer-aided design (CAD) plays an essential role in creative idea generation on 2D screens during the design process. In most CAD scenarios, virtual object translation is an essential operation, and it is commonly used when designers simulate their innovative solutions. The degrees of freedom (DoF) of virtual object translation modes have been found to directly impact users’ task performance and psychological aspects in simulated environments. Little is known in the existing literature about the sense of agency (SoA), which is a critical psychological aspect emphasizing the feeling of control, in translation modes on 2D screens during the design process. Hence, this study aims to assess users’ SoA in virtual object translation modes on mouse-based, touch-based, and handheld augmented reality (AR) interfaces through subjective and objective measures, such as self-report, task performance, and electroencephalogram (EEG) data. Based on our findings in this study, users perceived a greater feeling of control in 1DoF translation mode, which may help them come up with more creative ideas, than in 3DoF translation mode in the design process; additionally, the handheld AR interface offers less control feel, which may have a negative impact on design quality and creativity, as compared with mouse- and touch-based interfaces. This research contributes to the current literature by analyzing the association between virtual object translation modes and SoA, as well as the relationship between different 2D interfaces and SoA in CAD. As a result of these findings, we propose several design considerations for virtual object translation on 2D screens, which may enable designers to perceive a desirable feeling of control during the design process.
Mood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.
Methods
The study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.
Results
Two hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.
Conclusions
We predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.
In this review, we introduce our recent applications of deep learning to solar and space weather data. We have successfully applied novel deep learning methods to the following applications: (1) generation of solar farside/backside magnetograms and global field extrapolation based on them, (2) generation of solar UV/EUV images from other UV/EUV images and magnetograms, (3) denoising solar magnetograms using supervised learning, (4) generation of UV/EUV images and magnetograms from Galileo sunspot drawings, (5) improvement of global IRI TEC maps using IGS TEC ones, (6) one-day forecasting of global TEC maps through image translation, (7) generation of high-resolution magnetograms from Ca II K images, (8) super-resolution of solar magnetograms, (9) flare classification by CNN and visual explanation by attribution methods, and (10) forecasting GOES solar X-ray profiles. We present major results and discuss them. We also present future plans for integrated space weather models based on deep learning.
Background: Although small- and medium-sized hospitals comprise most healthcare providers in South Korea, data on antibiotic usage is limited in these facilities. We evaluated the pattern of antibiotic usage and its appropriateness in hospitals with <400 beds in South Korea. Methods: A multicenter retrospective study was conducted in 10 hospitals (6 long-term care hospitals, 3 acute-care hospitals, and 1 orthopedic hospital), with <400 beds in South Korea. We analyzed patterns of antibiotic prescription and their appropriateness in the participating hospitals. Data on the monthly antibiotic prescriptions and patient days for hospitalized patients were collected using electronic databases from each hospital. To avoid the effect of the COVID-19 pandemic, data were collected from January to December 2019. For the evaluation of the appropriateness of the prescription, 25 patients under antibiotic therapy were randomly selected at each hospital over 2 separate periods. Due to the heterogeneity of their characteristics, the orthopedics hospital was excluded from the analysis. The collected data were reviewed, and the appropriateness of antibiotic prescriptions was evaluated by 5 specialists in infectious diseases (adult and pediatric). Data from 2 hospitals were assigned to each specialist. The appropriateness of antibiotic prescriptions was evaluated from 3 aspects: route of administration, dose, and class. If the 3 aspects were ‘optimal,’ the prescription was considered ‘optimal.’ If only the route was ‘optimal,’ and the dose and/or class was ‘suboptimal,’ but not ‘inappropriate,’ it was considered ‘suboptimal.’ If even 1 aspect was ‘inappropriate,’ it was classified as ‘inappropriate.’ Results: The most commonly prescribed antibiotics in long-term care hospitals was fluoroquinolone, followed by β-lactam/β-lactamase inhibitor (antipseudomonal). In acute-care hospitals, these were third-generation cephalosporin, followed by first-generation cephalosporin and second-generation cephalosporin. The major antibiotics that were prescribed in the orthopedics hospital was first-generation cephalosporin. Only 2.3% of the antibiotics were administered inappropriately. In comparison, 15.3% of patients were prescribed an inappropriate dose. The proportion of inappropriate antibiotic prescriptions was 30.6% of the total antibiotic prescriptions. Conclusions: The antibiotic usage patterns vary between small- and medium-sized hospitals in South Korea. The proportion of inappropriate prescriptions exceeded 30% of the total antibiotic prescriptions.
The joint effects of stimulus quality and semantic context in visual word recognition were examined with event-related potential (ERP) recordings. In one-character Chinese word recognition, we manipulated stimulus quality at two degradation levels (highly vs. slightly degraded) and semantic context at two priming levels (semantically related vs. unrelated). In a prime–target–probe trial flow, ERPs were recorded to the target character which was presented in either high or slight degradation and which was preceded by either a semantically related or unrelated prime character. The target character was then followed by a probe character which was either identical to or different from the target character. Subjects were instructed to make target–probe matching judgments. The ERP results demonstrated a degradation by priming interaction, with larger N400 semantic priming effects for slightly degraded targets. Moreover, the degradation effects were observed on the P200, N250, and N400. These findings provided evidence for the cascaded model of visual word recognition such that the visual processing cascaded into the semantic stage and thus interacted on the N400 amplitude. The results were compared to an earlier study with a null ERP degradation by priming interaction. The ramifications of these results for models of visual word recognition are discussed.
This study presents an under-actuated snake arm maintainer (SAM) for complex and extreme environments such as nuclear power plants. The structure adopts the layered cable drive principle, whereby a single drive layer drives multiple joints. This design significantly reduces the complexity of the control system while increasing the spatial curvature. The traction of multiple wire ropes with a composite capstan drives the synchronous angular motion of several adjacent joints. By changing the number of joints in the single driver layer of the snake arm, the arm can be adapted to various complex environments. The trajectory planning and trajectory tracking motion control methods of the under-actuated SAM are established based on the improved backbone method and the variable rod length algorithm. Finally, a 10-joint prototype with an arm length of 2300 mm is designed for nuclear reactor maintenance. Trajectory experiments confirmed the rationality of the under-actuated SAM, the correctness of the inverse kinematics, and the effectiveness of the motion control methods.
The explosive outbreak of COVID-19 led to a shortage of medical resources, including isolation rooms in hospitals, healthcare workers (HCWs) and personal protective equipment. Here, we constructed a new model, non-contact community treatment centres to monitor and quarantine asymptomatic and mildly symptomatic COVID-19 patients who recorded their own vital signs using a smartphone application. This new model in Korea is useful to overcome shortages of medical resources and to minimise the risk of infection transmission to HCWs.
To investigate the feasibility of using an ultraviolet light-emitting diode (UV LED) robot for the terminal decontamination of coronavirus disease 2019 (COVID-19) patient rooms.
Methods:
We assessed the presence of viral RNA in samples from environmental surfaces before and after UV LED irradiation in COVID-19 patient rooms after patient discharge.
Results:
We analyzed 216 environmental samples from 17 rooms: 2 from airborne infection isolation rooms (AIIRs) in the intensive care unit (ICU) and 15 from isolation rooms in the community treatment center (CTC). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was detected in 40 (18.5%) of 216 samples after patient discharge: 12 (33.3%) of 36 samples from AIIRs in the ICU, and 28 (15.6%) of 180 samples from isolation rooms in the CTC. In 1 AIIR, all samples were PCR negative after UV LED irradiation. In the CTC rooms, 14 (8.6%) of the 163 samples were PCR positive after UV LED irradiation. However, viable virus was not recovered from the culture of any of the PCR-positive samples.
Conclusions:
Although no viable virus was recovered, SARS-CoV-2 RNA was detected on various environmental surfaces. The use of a UV LED disinfection robot was effective in spacious areas such as an ICU, but its effects varied in small spaces like CTC rooms. These findings suggest that the UV LED robot may need enough space to disinfect rooms without recontamination by machine wheels or insufficient disinfection by shadowing.
A study was conducted to identify whether composted manure and straw amendments (replacement of a portion of chemical fertilizer [50% of the total nitrogen application] with composted pig manure, and straw return [all straw from the previous rice crop] combined with chemical fertilizer) compared with no fertilization and chemical fertilizer only would change the dominant species of wheat-associated weeds as well as influence their growth and seed yield in a rice (Oryza sativa L.)–wheat (Triticum aestivum L.) rotation system. The study was initiated in 2010, and the treatment effects on the species, density, plant height, shoot biomass, seed yield of dominant weeds, and wheat yields were assessed in 2017 and 2018. Fertilization significantly increased the height, density, and yield of wheat, as well as the shoot biomass of wheat-associated weeds, but decreased the weed species number. A total of 17 and 14 weed species were recorded in the experimental wheat fields in 2017 and 2018, respectively. The most dominant weed species were American sloughgrass [Beckmannia syzigachne (Steud.) Fernald] and catchweed bedstraw (Galium aparine L.), which made up more than 64% of the weed community in all treatments. When the chemical fertilizer application was amended with pig manure compost and straw return, the relative abundance of B. syzigachne significantly decreased, while the relative abundance of G. aparine significantly increased. The application of the chemical fertilizer-only treatment resulted in increases in the density, shoot biomass, and seed yield of B. syzigachne, while the composted manure and straw amendments applied together with chemical fertilizer led to significant increases in the density, shoot biomass, and seed yield of G. aparine. Consequently, further research on ways to promote greater cropping system diversity will be needed to prevent the selection of weed species that are adapted to a limited suite of crop management practices.
Hypertension represents one of the most common pre-existing conditions and comorbidities in Coronavirus disease 2019 (COVID-19) patients. To explore whether hypertension serves as a risk factor for disease severity, a multi-centre, retrospective study was conducted in COVID-19 patients. A total of 498 consecutively hospitalised patients with lab-confirmed COVID-19 in China were enrolled in this cohort. Using logistic regression, we assessed the association between hypertension and the likelihood of severe illness with adjustment for confounders. We observed that more than 16% of the enrolled patients exhibited pre-existing hypertension on admission. More severe COVID-19 cases occurred in individuals with hypertension than those without hypertension (21% vs. 10%, P = 0.007). Hypertension associated with the increased risk of severe illness, which was not modified by other demographic factors, such as age, sex, hospital geological location and blood pressure levels on admission. More attention and treatment should be offered to patients with underlying hypertension, who usually are older, have more comorbidities and more susceptible to cardiac complications.
The aim of the present study was to investigate the effects of porcine follicular fluid (pFF) from large-sized (LFF; >8 mm in diameter) and medium-sized (MFF; 3–6 mm in diameter) follicles on the maturation and developmental competence of porcine oocytes. Cumulus–oocyte complexes (COCs) were collected from follicles 3–6 mm in diameter. The collected COCs were incubated for 22 h with LFF or MFF (in vitro maturation (IVM)-I stage) and were incubated subsequently for 22 h with LFF or MFF (IVM-II stage). Cumulus expansion was confirmed after the IVM-I stage and nuclear maturation was evaluated after the IVM-II stage. Intracellular glutathione (GSH) and reactive oxygen species (ROS) levels were measured and embryonic development was evaluated. Relative cumulus expansion and GSH levels were higher in the LFF group compared with in the MFF group after the IVM-I stage (P < 0.05). After the IVM-II stage, the numbers of oocytes in metaphase-II were increased in the LFF group and GSH content was higher in all of the LFF treatment groups compared with in the MFF treatment groups during both IVM stages (P < 0.05). ROS levels were reduced by LFF treatment regardless of IVM stage (P < 0.05). Blastocyst formation and the total numbers of cells in blastocysts were increased in all LFF treatment groups compared with the control group (P < 0.05). These results suggested that pFF from large follicles at the IVM stage could improve nucleic and cytoplasmic maturation status and further embryonic development through reducing ROS levels and enhancing responsiveness to gonadotropins.
Coronavirus disease 2019 (COVID-19) patients were classified into four clinical stages (uncomplicated illness, mild, severe and critical pneumonia) depending on disease severity. We aim to investigate the corresponding clinical, radiological and laboratory characteristics between different clinical stages. A retrospective, single-centre study of 101 confirmed patients with COVID-19 at Renmin Hospital of Wuhan University from 2 January to 28 January 2020 was enrolled; follow-up endpoint was on 8 February 2020. Clinical data were collected and compared during the course of illness. The median age of the 101 patients was 51.0 years and 33.6% were medical staff. Fever (68%), cough (50%) and fatigue (23%) are the most common symptoms. About 26% patients underwent the mechanical ventilation and 98% patients were treated with antibiotics. Thirty-seven per cent patients were cured and 11 died. On admission, the number of patients with uncomplicated illness, mild, severe and critical pneumonia were 2 [2%], 86 [85%], 11 [11%] and 2 [2%]. Forty-four of the 86 mild pneumonia progressed to severe illness within 4 days, with nine patients worsened due to critical pneumonia within 4 days. Two of the 11 severe patients improved to mild condition while three others deteriorated. Significant differences were observed among groups of different clinical stages in numbers of influenced pulmonary segments (6 vs. 12 vs. 17, P < 0.001). A significantly upward trend was witnessed in ground-glass opacities overlapped with striped shadows (33% vs. 42% vs. 55% vs. 80%, P < 0.001), while pure ground-glass opacities gradually decreased as disease progressed (45% vs. 35% vs. 24% vs. 13%, P < 0.001) within 12 days. Lymphocytes, prealbumin and albumin showed a downtrend as disease progressed from mild to severe or critical condition, an uptrend was found in white blood cells, C-reactive protein, neutrophils and lactate dehydrogenase. The proportions of serum amyloid A > 300 mg/l in mild, severe and critical conditions were 18%, 46% and 71%, respectively.
Glyphosate is easily translocated from shoots to roots and released into the rhizosphere. The objective of this study was to clarify the influence of glyphosate residues in the root tissue of glyphosate-treated weeds on wheat (Triticum aestivum L.) growth and shikimate accumulation. Foliar application to 5-leaf downy brome (Bromus tectorum L.) planted in sandy loam soil reduced wheat (‘Tubbs 06’) shoot fresh weight by 37% to 46% compared with the control when seeds were planted 0 and 1 d after applications. With Italian ryegrass [Lolium perenne L. ssp. multiflorum (Lam.) Husnot], wheat shoot fresh weight was inhibited by 20% to 34% compared with the control at 0, 1, 3, and 5 d after applications to 1.5- and 5-leaf-stage plants. Using a different wheat cultivar (‘Stephens’), shoot fresh weight was inhibited by 19% to 43% when seeds were planted 0 d after glyphosate applications to 1.5-, 2-, and 5-leaf-stage B. tectorum and L. perenne planted in sandy loam soil compared with control. In contrast, some studies using treated L. perenne and B. tectorum planted in clay loam soil resulted in increases in wheat shoot fresh weight. Lolium perenne planted in water-saturated sandy loam soil showed no differences in either shoot or root fresh weight or shikimate accumulation in shoots or roots. Compared with the control plants, shikimate accumulation in roots increased 51- to 59-fold in wheat planted in sandy loam soil that previously contained B. tectorum and 13- to 49-fold in soil that previously contained L. perenne. In both studies, glyphosate was applied at the 1.5-leaf stage, and wheat seeds were sown 0, 1, and 3 d after glyphosate applications. Thus, plant damage caused by glyphosate was associated with increased shikimate accumulation in the root tissue. Overall, crop damage caused by glyphosate residue to target plants was strongly influenced by soil type, soil water conditions, glyphosate sensitivity, target weed species identity, and weed densities.
Image stitching is important for the perception and manipulation of undersea robots. In spite of a well-developed technique, it is still challenging for undersea images because of their inevitable appearance ambiguity caused by the limited light in the undersea environment, and local disturbance caused by moving objects, ocean current, etc. To get a clean and stable background panorama in the undersea environment, this paper proposes an undersea image-stitching method by introducing graph-based registration and blending procedures. Specifically, in the registration procedure, matching the features in each undersea image pair is formulated and solved by graph matching, to incorporate the structural information between features. In the blending procedure, an energy function on the indirect graph Markov random field is proposed, which takes both image consistency and neighboring consistency into consideration. Coincidentally, both graph matching and energy minimization can be mathematically formulated by integer quadratic programming problems with different constraints; the recently proposed graduated nonconvexity and concavity procedure is used to optimize both problems. Experiments on both synthetic images and real-world undersea images witness the effectiveness of the proposed method.
Novel NiMoO4-integrated electrode materials were successfully prepared by solvothermal method using Na2MoO4·2H2O and NiSO4·6H2O as main raw materials, water, and ethanol as solvents. The morphology, phase, and structure of the as-prepared materials were characterized by SEM, XRD, Raman, and FT-IR. The electrochemical properties of the materials in supercapacitors were investigated by cyclic voltammetry, constant current charge–discharge, and electrochemical impedance spectroscopy techniques. The effects of volume ratio of water to ethanol (W/E) in solvent on the properties of the product were studied. The results show that the pure phase monoclinic crystal NiMoO4 product can be obtained when the W/E is 2:1. The diameter and length are 0.1–0.3 µm and approximately 3 µm, respectively. As an active material for supercapacitor, the NiMoO4 nanorods material delivered a discharge specific capacitance of 672, 498, and 396 F/g at a current density of 4, 7, and 10 A/g, respectively. The discharge specific capacitance slightly decreased from 815 to 588 F/g with a retention of 72% after 1000 cycles at a current density of 1 A/g. With these superior capacitance properties, the novel NiMoO4 integrated electrode materials could be considered as promising material for supercapacitors.