We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Over-expansion flow can generate asymmetric shock wave interactions, which lead to significant lateral forces on a nozzle. However, there is still a lack of a suitable theory to explain the phenomenon of asymmetry. The current work carefully investigates the configurations of shock wave interactions in a planar nozzle, and proposes a theoretical method to analyse the asymmetry of over-expansion flows. First, various possible flow patterns of over-expansion flows are discussed, including regular and Mach reflections. Second, the free interaction theory and the minimum entropy production principle are used to analyse the boundary layer flow and main shock wave interactions, establish the relationship between the separation shock strength and separation position, and predict asymmetric configurations. Finally, experiments are conducted to validate the theoretical method, and similar experiments from other studies are discussed to demonstrate the effectiveness of the proposed method. Results demonstrate that the direction of asymmetric over-expansion flow is random, and the separated flow strives to adopt a pattern with minimal total pressure loss. Asymmetric interaction is a mechanism through which the flow can achieve a more efficient thermodynamic balance by minimising entropy production.
The extracellular matrices, such as the haemolymph, in insects are at the centre of most physiological processes and are protected from oxidative stress by the extracellular antioxidant enzymes. In this study, we identified two secreted superoxide dismutase genes (PxSOD3 and PxSOD5) and investigated the oxidative stress induced by chlorpyrifos (CPF) in the aquatic insect Protohermes xanthodes (Megaloptera: Corydalidae). PxSOD3 and PxSOD5 contain the signal peptides at the N-terminus. Structure analysis revealed that PxSOD3 and PxSOD5 contain the conserved CuZn-SOD domain, which is mainly composed of β-sheets and has conserved copper and zinc binding sites. Both PxSOD3 and PxSOD5 are predicted to be soluble proteins located in the extracellular space. After exposure to different concentrations of sublethal CPF, MDA content in P. xanthodes larvae were increased in a dose-dependent manner; SOD and CAT activities were also higher in CPF-treated groups than that in the no CPF control, indicating that sublethal CPF induces oxidative stress in P. xanthodes larvae. Furthermore, PxSOD3 and PxSOD5 expression levels and haemolymph SOD activity in the larvae were downregulated by sublethal CPF at different concentrations. Our results suggest that the PxSOD3 and PxSOD5 are putative extracellular antioxidant enzymes that may play a role in maintaining the oxidative balance in the extracellular space. Sublethal CPF may induce oxidative stress in the extracellular space of P. xanthodes by reducing the gene expression and catalytic activity of extracellular SODs.
Asian corn borer, Ostrinia furnacalis Guenée (Lepidoptera: Crambidae), is a major pest in corn production, and its management remains a significant challenge. Current control methods, which rely heavily on synthetic chemical pesticides, are environmentally detrimental and unsustainable, necessitating the development of eco-friendly alternatives. This study investigates the potential of the entomopathogenic nematode Steinernema carpocapsae as a biological control agent for O. furnacalis pupae, focusing on its infection efficacy and the factors influencing its performance. We conducted a series of laboratory experiments to evaluate the effects of distance, pupal developmental stage, soil depth, and light conditions on nematode attraction, pupal mortality and sublethal impacts on pupal longevity and oviposition. Results demonstrated that S. carpocapsae exhibited the highest attraction to pupae at a 3 cm distance, with infection declining significantly at greater distances. Younger pupae (<12 h old), were more attractive to nematodes than older pupae, and female pupae were preferred over males. Nematode infection was highest on the head and thorax of pupae, with a significant reduction in infection observed after 24 h. Infection caused 100% mortality in pupae within 2 cm soil depth, though efficacy was reduced under light conditions. Sublethal effects included a significant reduction in the longevity of infected adults and a decrease in the number of eggs laid by infected females compared to controls. These findings underscore the potential of S. carpocapsae as an effective biocontrol agent for sustainable pest management in corn production, offering a viable alternative to chemical pesticides.
which models the motion of swimming bacteria in water flows. First, we prove blow-up criteria of strong solutions to the Cauchy problem, including the Prodi-Serrin-type criterion for $\alpha \gt \frac {3}{4}$ and the Beir$\tilde {\textrm {a}}$o da Veiga-type criterion for $\alpha \gt \frac {1}{2}$. Then, we verify the global existence and uniqueness of strong solutions for arbitrarily large initial fluid velocity and bacteria density for $\alpha \geq \frac {5}{4}$. Furthermore, in the scenario of $\frac {3}{4}\lt \alpha \lt \frac {5}{4}$, we establish uniform regularity estimates and optimal time-decay rates of global solutions if only the $L^2$-norm of initial data is small. To our knowledge, this work provides the first result concerning the global existence and large-time behaviour of strong solutions for the chemotaxis-Navier–Stokes equations with possibly large oscillations.
Although active flow control based on deep reinforcement learning (DRL) has been demonstrated extensively in numerical environments, practical implementation of real-time DRL control in experiments remains challenging, largely because of the critical time requirement imposed on data acquisition and neural-network computation. In this study, a high-speed field-programmable gate array (FPGA) -based experimental DRL (FeDRL) control framework is developed, capable of achieving a control frequency of 1–10 kHz, two orders higher than that of the existing CPU-based framework (10 Hz). The feasibility of the FeDRL framework is tested in a rather challenging case of supersonic backward-facing step flow at Mach 2, with an array of plasma synthetic jets and a hot-wire acting as the actuator and sensor, respectively. The closed-loop control law is represented by a radial basis function network and optimised by a classical value-based algorithm (i.e. deep Q-network). Results show that, with only ten seconds of training, the agent is able to find a satisfying control law that increases the mixing in the shear layer by 21.2 %. Such a high training efficiency has never been reported in previous experiments (typical time cost: hours).
The emotion regulation network (ERN) in the brain provides a framework for understanding the neuropathology of affective disorders. Although previous neuroimaging studies have investigated the neurobiological correlates of the ERN in major depressive disorder (MDD), whether patients with MDD exhibit abnormal functional connectivity (FC) patterns in the ERN and whether the abnormal FC in the ERN can serve as a therapeutic response signature remain unclear.
Methods
A large functional magnetic resonance imaging dataset comprising 709 patients with MDD and 725 healthy controls (HCs) recruited across five sites was analyzed. Using a seed-based FC approach, we first investigated the group differences in whole-brain resting-state FC of the 14 ERN seeds between participants with and without MDD. Furthermore, an independent sample (45 MDD patients) was used to evaluate the relationship between the aforementioned abnormal FC in the ERN and symptom improvement after 8 weeks of antidepressant monotherapy.
Results
Compared to the HCs, patients with MDD exhibited aberrant FC between 7 ERN seeds and several cortical and subcortical areas, including the bilateral middle temporal gyrus, bilateral occipital gyrus, right thalamus, calcarine cortex, middle frontal gyrus, and the bilateral superior temporal gyrus. In an independent sample, these aberrant FCs in the ERN were negatively correlated with the reduction rate of the HAMD17 score among MDD patients.
Conclusions
These results might extend our understanding of the neurobiological underpinnings underlying unadaptable or inflexible emotional processing in MDD patients and help to elucidate the mechanisms of therapeutic response.
This study aimed to explore the combined association between the dietary antioxidant quality score (DAQS) and leisure-time physical activity on sleep patterns in cancer survivors. Data of cancer survivors were extracted from the National Health and Nutrition Examination Surveys database in 2007–2014 in this cross-sectional study. Weighted multivariable logistic regression models were used to estimate OR and 95 % CI for the association of DAQS and leisure-time physical activity on sleep patterns. The combined association was also assessed in subgroups of participants based on age and use of painkillers and antidepressants. Among the eligible participants, 1133 had unhealthy sleep patterns. After adjusting for covariates, compared with low DAQS level combined with leisure-time physical activity level < 600 MET·min/week, high DAQS level combined with leisure-time physical activity ≥ 600 MET·min/week was associated with lower odds of unhealthy sleep patterns (OR = 0·41, 95 % CI: 0·23, 0·72). Additionally, the association of high DAQS level combined with high leisure-time physical activity with low odds of unhealthy sleep patterns was also significant in < 65 years old (OR = 0·30, 95 % CI: 0·13, 0·70), non-painkiller (OR = 0·39, 95 % CI: 0·22, 0·71), non-antidepressant (OR = 0·49, 95 % CI: 0·26, 0·91) and antidepressant (OR = 0·11, 95 % CI: 0·02, 0·50) subgroups. DAQS and leisure-time physical activity had a combined association on sleep patterns in cancer survivors. However, the causal associations of dietary nutrient intake and physical activity with sleep patterns in cancer survivors need further clarification.
As a required sample preparation method for 14C graphite, the Zn-Fe reduction method has been widely used in various laboratories. However, there is still insufficient research to improve the efficiency of graphite synthesis, reduce modern carbon contamination, and test other condition methodologies at Guangxi Normal University (GXNU). In this work, the experimental parameters, such as the reduction temperature, reaction time, reagent dose, Fe powder pretreatment, and other factors, in the Zn-Fe flame sealing reduction method for 14C graphite samples were explored and determined. The background induced by the sample preparation process was (2.06 ± 0.55) × 10–15, while the 12C– beam current were better than 40μA. The results provide essential instructions for preparing 14C graphite of ∼1 mg at the GXNU lab and technical support for the development of 14C dating and tracing, contributing to biology and environmental science.
The absorption and distribution of radiocarbon-labeled urea at the ultratrace level were investigated with a 14C-AMS biotracer method. The radiopharmaceutical concentrations in the plasma, heart, liver, spleen, lung, kidney, stomach, brain, bladder, muscle, testis, and fat of rats after oral administration of 14C urea at ultratrace doses were determined by AMS, and the concentration-time curves in plasma and tissues and pharmacokinetic distribution data were obtained. This study provides an analytical method for the pharmacokinetic parameters and tissue distribution of exogenous urea in rats at ultratrace doses and explores the feasibility of evaluation and long-term tracking of ultratrace doses of drugs with AMS.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.
Vegetables are known to be beneficial to human health, but the association between vegetable consumption and gastric cancer remains uncertain. To synthesise knowledge about the relationship between vegetable group consumption and gastric cancer risk, update present meta-analyses and estimate associations between vegetable consumption and gastric cancer risk based solely on prospective studies, we perform a PRISMA-compliant three-level meta-analysis. Systematic search identified thirteen prospective studies with fifty-two effect sizes that met all inclusion criteria and no exclusion criteria for our meta-analysis. Pooled risk ratios (RRs) showed a positive association between high vegetable consumption and low gastric cancer risk (pooled RR 0·93, 95% confidence interval 0·90–0·97, P = 0·06). In moderator analyses for indicators of gender, region and quantity of vegetable intake, there was no significant difference between subgroups. However, the effect became significant in populations with lower than the minimum risk exposure level (TMREL) of vegetable consumption (P < 0·05). Higher vegetable intake is associated with a decreased risk of gastric cancer. This effect may be limited to specific populations, such as ones with lower vegetable consumption. Evidence from our study has important public health implications for dietary recommendations.
Exploring the neural basis related to different mood states is a critical issue for understanding the pathophysiology underlying mood switching in bipolar disorder (BD), but research has been scarce and inconsistent.
Methods
Resting-state functional magnetic resonance imaging data were acquired from 162 patients with BD: 33 (hypo)manic, 64 euthymic, and 65 depressive, and 80 healthy controls (HCs). The differences of large-scale brain network functional connectivity (FC) between the four groups were compared and correlated with clinical characteristics. To validate the generalizability of our findings, we recruited a small longitudinal independent sample of BD patients (n = 11). In addition, we examined topological nodal properties across four groups as exploratory analysis.
Results
A specific strengthened pattern of network FC, predominantly involving the default mode network (DMN), was observed in (hypo)manic patients when compared with HCs and bipolar patients in other mood states. Longitudinal observation revealed an increase in several network FCs in patients during (hypo)manic episode. Both samples evidenced an increase in the FC between the DMN and ventral attention network, and between the DMN and limbic network (LN) related to (hypo)mania. The altered network connections were correlated with mania severity and positive affect. Bipolar depressive patients exhibited decreased FC within the LN compared with HCs. The exploratory analysis also revealed an increase in degree in (hypo)manic patients.
Conclusions
Our findings identify a distributed pattern of large-scale network disturbances in the unique context of (hypo)mania and thus provide new evidence for our understanding of the neural mechanism of BD.
Hong Kong experienced four epidemic waves caused by the ancestral strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2020–2021 and a large Omicron wave in 2022. Few studies have assessed antibacterial prescribing for coronavirus disease 2019 (COVID-19) inpatients throughout the pandemic.
Objectives:
To describe inpatient antibacterial prescribing and explore factors associated with their prescription.
Methods:
Electronic health records of patients with COVID-19 admitted to public hospitals in Hong Kong from 21 January 2020 to 30 September 2022 were used to assess the prevalence and rates of inpatient antibacterial drug use (days of therapy/1,000 patient days [DOT/1,000 PD]). We used multivariable logistic regression to investigate potential associations between patients’ baseline characteristics and disease severity and prescription of an antibacterial drug during hospital admission.
Results:
Among 65,810 inpatients with COVID-19, 54.0% were prescribed antibacterial drugs (550.5 DOT/1,000 PD). Compared to waves 1–2 (46.7%; 246.9 DOT/1,000 PD), the prescriptions were lowest during wave 4 (28.0%; 246.9; odds ratio (OR): 0.39, 95% CI: 0.31–0.49) and peaked in early wave 5 (64.6%; 661.2; 0.82, 0.65–1.03). Older age (≥80 years: OR 2.66, 95% CI, 2.49–2.85; 60–79 years: 1.59, 1.51–1.69, compared with 20–59 years), more severe disease (fatal: 3.64, 3.2–4.16; critical: 2.56, 2.14–3.06, compared with severe), and COVID-19 vaccine doses (two doses: 0.74, 0.69–0.78; three doses: 0.69, 0.64–0.74; four doses: 0.52, 0.44–0.62, compared with unvaccinated) were associated with inpatient antibacterial drug use.
Conclusions:
Antibacterial prescribing changed over time for hospitalized patients with confirmed COVID-19 and was potentially related to patients’ demographics, medical conditions, and COVID-19 vaccination status as well as healthcare capacity during epidemic waves.
Non-suicidal self-injury (NSSI) is prevalent in major depressive disorder (MDD) during adolescence, but the underlying neural mechanisms are unclear. This study aimed to investigate microstructural abnormalities in the cingulum bundle associated with NSSI and its clinical characteristics.
Methods
130 individuals completed the study, including 35 healthy controls, 47 MDD patients with NSSI, and 48 MDD patients without NSSI. We used tract-based spatial statistics (TBSS) with a region of interest (ROI) analysis to compare the fractional anisotropy (FA) of the cingulum bundle across the three groups. receiver-operating characteristics (ROC) analysis was employed to evaluate the ability of the difficulties with emotion regulation (DERS) score and mean FA of the cingulum to differentiate between the groups.
Results
MDD patients with NSSI showed reduced cingulum integrity in the left dorsal cingulum compared to MDD patients without NSSI and healthy controls. The severity of NSSI was negatively associated with cingulum integrity (r = −0.344, p = 0.005). Combining cingulum integrity and DERS scores allowed for successful differentiation between MDD patients with and without NSSI, achieving a sensitivity of 70% and specificity of 83%.
Conclusions
Our study highlights the role of the cingulum bundle in the development of NSSI in adolescents with MDD. The findings support a frontolimbic theory of emotion regulation and suggest that cingulum integrity and DERS scores may serve as potential early diagnostic tools for identifying MDD patients with NSSI.
Six consecutive solitary waves with identical wave height and separation time are generated to study the flow structures during the uprush–downwash interactions in the swash zone. Using particle image velocimetry, the cross-shore velocity fields are captured. Two different wave conditions are examined with different wave-height-to-water-depth ratios, i.e. $H_o/h=0.11$ and 0.22. The uprush–downwash interaction reaches quasi-steady state from the third solitary wave for both cases. For the former case, a weak non-stationary hydraulic jump appears during the downwash flow for all the six consecutive waves. The weak hydraulic jump evolves into a momentarily ‘stationary’ broken bore when the next wave arrives. For the latter case, the larger wave height generates stronger wave breaking. No non-stationary hydraulic jump is observed as the duration of downwash flow is relatively short. The flow reverses to the onshore direction before the downwash Froude number reaches the hydraulic jump condition. The temporal and spatial evolution of turbulence structure at the quasi-steady state is quantified using the spatial spectral analysis, the integral length scale and turbulence eddy viscosity. The results suggest that the large-scale energy generated during the uprush–downwash interaction modified the slope of the turbulence energy spatial spectrum in the inertial subrange from $-$5/3 to $-$1 in the larger length scale region, indicating the energy cascade depends not only on the dissipation rate, but also on the turbulent kinetic energy from the large-scale turbulence structure because of the large-scale energy injection in the inertial subrange.
OBJECTIVES/GOALS: Clinical tissue specimens are primarily destined for formalin fixed, paraffin embedded processing to create a basis for diagnosis by microscopic examination. Innovations in specimen processing are required to expand its availability for inclusion as the substrate in assays that can contribute to the further development of Precision Medicine. METHODS/STUDY POPULATION: Transurethral resection of bladder tumors were selected for testing based on availability and tissue composition. A wash step was used to generate daughter aliquots composed of dislodged cells and a solution with prior contact to the parent tissue. This wash step served two purposes: 1) reduce the amount of contaminating material from spreading to other cases, a problem known to be associated with this type of specimen; and 2) create aliquots from which additional informative data could be generated. These daughter aliquots were then examined to determine their value as a source for exosome profiling, metabolomic studies, molecular characterization and organoid development. The parent tissue was not compromised, was able to undergo conventional processing and yielded results equivalent to unwashed specimens. RESULTS/ANTICIPATED RESULTS: Exosomes secreted by the tumor cells were identified to be present in the daughter aliquots by a combination of their isolation using CD31 and detection of miR-21 expression. These exosomes were confirmed to be not related to fragmented cells from testing for beta-tubulin. A global/discovery-based approach using mass spectrometry provided insights into early characterization of metabolomic profiles present in these tumor cells. Ample amounts of high quality DNA (226 ng/ul concentrations; 11.3 ug total) were recovered from the dislodged, excess cells in the wash for molecular studies. Finally, from viable cells recovered in one of the daughter wash aliquots, the ability to grow organoids was proven to be possible and reproducible. DISCUSSION/SIGNIFICANCE: Based on these results, the value of the clinical specimen can be markedly expanded for utilization in research and possible clinical use without detracting from the parent tissue. This non-destructive, easy to adopt wash procedure can potentially lead to an influx of data that may ultimately prove useful in improving patient care.
Polydatin is an active polyphenol displaying multifaceted benefits. Recently, growing studies have noticed its potential therapeutic effects on bone and joint disorders (BJDs). Therefore, this article reviews recent in vivo and in vitro progress on the protective role of polydatin against BJDs. An insight into the underlying mechanisms is also presented. It was found that polydatin could promote osteogenesis in vitro, and symptom improvements have been disclosed with animal models of osteoporosis, osteosarcoma, osteoarthritis and rheumatic arthritis. These beneficial effects obtained in laboratory could be mainly attributed to the bone metabolism-regulating, anti-inflammatory, antioxidative, apoptosis-regulating and autophagy-regulating functions of polydatin. However, studies on human subjects with BJDs that can lead to early identification of the clinical efficacy and adverse effects of polydatin have not been reported yet. Accordingly, this review serves as a starting point for pursuing clinical trials. Additionally, future emphasis should also be devoted to the low bioavailability and prompt metabolism nature of polydatin. In summary, well-designed clinical trials of polydatin in patients with BJD are in demand, and its pharmacokinetic nature must be taken into account.
Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) is a major concern for hospitalized patients in Singapore. Hospital-onset (HO) MRSA bacteremia is monitored at the national level as an indicator of hospital quality. Patients who have colonized with methicillin-resistant Staphylococcus aureus (MRSA) are more likely to develop an MRSA infection in the future. A topical antiseptic solution or cloth called chlorhexidine gluconate (CHG) is effective against several gram-positive and gram-negative bacteria, including MRSA. Methods: The following control measures were present before and throughout the study period: (1) active screening of MRSA upon admission; (2) initiation of contact precaution once MRSA is detected; and (3) emphasis on strict hand hygiene. In January 2021, an intervention was for routine application of CHG bathing as follows: (1) training materials were developed; (2) train-the-trainer sessions were organized; (3) compliance regarding the application of CHG baths was monitored; and (4) the postimplementation process was reviewed. Results: There was no change of hand hygiene rate before and after implementation. In 2020, 17 cases of MRSA bacteremia occurred in the hospital, with an infection incidence of 0.54 per 10,000 patient days. In 2021, there were 10 cases of HO-MRSA bacteremia infection, with an overall rate of was 0.30 per 10,000 patient days. Conclusions: Daily bathing with chlorhexidine reduced the risk of MRSA acquisition and of hospital-acquired bacteremia.
Objectives: Carbapenemase-producing carbapenem-resistant Enterobacteriaceae (CP-CRE) are nosocomial pathogens, and control of CP-CRE transmission is one of the most important infection control issues healthcare organizations face today. Increasing colonization acquisition and clinical infections of CP-CRE occurred in our institution in 2019. In this observational study, we monitored CP-CRE acquisition following implementation of multimodal control measures, and we describe the impact of this intervention on clinical infections. Methods: Increased hospital-acquired CP-CRE colonization and clinical infections were observed in early 2019. Increased CP-CRE surveillance was implemented to include CP-CRE contacts, patients with lengths of stay >7 days, patients with a recent history of hospitalization in other hospitals, and renal dialysis patients. The following interventions were also implemented: (1) isolation or placing CP-CRE patients in cohorts in a designated multidrug-resistant organism (MDRO) ward; (2) emphasis on hand hygiene and contact precautions; (3) mandatory use of gown and gloves for predefined ‘high-risk’ nursing activities, including diaper changing, toilet assistance, wound dressing, and handling urine or stool; (4) enhanced environmental and equipment cleaning; (5) regular audit and feedback regarding compliance; and (6) weekly feedback on ward-level CP-CRE acquisition. CP-CRE colonization cases and clinical infections were tracked by infection prevention and control nurses. Results: The hospital-acquired CP-CRE colonization rate was 4.39 per 10,000 patient days in 2019; it decreased slightly to 3.61 in 2020 and remained steady at 3.77 in 2021. The predominant CP-CRE genes were NDM, OXA-48–like, and KPC. There were 12 hospital-acquired CP-CRE infections in 2019, a rate of 0.37 per 10,000 patient days. This incidence decreased to 6 infections in 2020 and 3 infections in 2021, with corresponding infection rates of 0.19 and 0.09 per 10,000 patient days, respectively. Conclusions: Control of CP-CRE remains extremely challenging in hospitals with multibed open wards. A bundle approach to infection control showed a gradual reduction in CP-CRE cases, with a significant impact on the prevention of clinical infections.
Objectives: Control of Clostridioides difficile infections (CDIs) in healthcare facilities presents significant challenges to infectious disease physicians, infection prevention and control practitioners, and environmental services staff. CDI is a common cause of infectious diarrhea and is associated with significant morbidity, mortality, and healthcare cost. A high infection rate was documented in our institution in 2017, higher than the national infection rate. Strategies to reduce hospital-onset CDI were implemented after review of international guidelines and relevant literature. The impact on hospital-onset CDI was assessed. Methods: The following strategies were implemented beginning early in 2018: (1) contact precautions for patients with diarrhea; (2) early recognition and diagnosis of C. difficile infection; (3) prompt isolation of C. difficile patients; (4) emphasis on hand hygiene and contact precautions; (5) enhanced environmental cleaning with chlorine-based disinfectant and use of UV-C and ionized hydrogen peroxide for equipment disinfection; (6) enhanced cleaning and disinfection using sporicidal wipes for shared high-risk equipment; (7) audit and feedback regarding compliance with practices and environmental cleaning; and (8) collaboration with antibiotics stewardship program (ASP) to reduce inappropriate antibiotic use. Hospital-onset CDI cases were tracked by infection prevention and control nurses using definitions from the Singapore Ministry of Health. Results: In total, 135 hospital-onset C. difficile infection cases occurred in 2017, a rate of 4.2 per 10,000 patient days. This rate gradually decreased to 3.0 in 2018 and to 2.3 in 2020, with an average of 87 infections per year. This rate further decreased to 1.8 infections per 10,000 patient days in 2021, with 61 clinical infections. Conclusions: Using multimodal strategies, CGH achieved a gradual and steady reduction in hospital-onset CDI over several years. These strategies require close collaboration among various departments to achieve the desired outcome.