We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Station-keeping control is a critical technology for stratospheric aerostats. For those aerostats that utilise wind field environments to achieve trajectory control, the station-keeping capability of a single aerostat is inherently limited. This limitation can lead to instances of the aerostat flying outside the designated task area, thereby diminishing the effectiveness of station-keeping control. To ensure continuous monitoring of the restricted area for long endurance, dynamic adjustments and cooperative coverage among multiple aerostats are necessary. This paper introduces an optimal coverage algorithm based on Voronoi diagrams and presents a formation control method for stratospheric aerostats that employs the virtual force method and the ${A^{\rm{*}}}$ algorithm, respectively. In a real wind field environment, ten aerostats are deployed to optimally cover the restricted area. Simulation results indicate that the coverage rate of the stratospheric aerostats within the restricted area can exceed 70%, while the network connectivity rate among the aerostats can reach 80% following guidance control during return flights. Furthermore, the stratospheric aerostats that flying out of the restricted area can return through path planning and optimal coverage algorithm, and the networking connectivity rate between aerostats is higher than that using the virtual force method.
The cyst nematodes, subfamily Heteroderinae, are plant pathogens of worldwide economic significance. A new cyst nematode of the genus Cactodera within the Heteroderinae, Cactodera xinanensis n. sp., was isolated from rhizospheres of crops in the Guizhou and Sichuan provinces of southwest China. The new species was characterized by having the cyst with a length/width = 1.3 ± 0.1 (1.1–1.6), a fenestral diameter of 28.1 ± 4.3 (21.3–38.7) μm, vulval denticles present; second-stage juvenile with stylet 21.5 ± 0.5 (20.3–22.6) μm long, tail 59.4 ± 2.0 (55.9–63.8) μm long and hyaline region 28.7 ± 2.7 (25.0–36.3) μm long, lateral field with four incisures; the eggshell with punctations. The new species can be differentiated from other species of Cactodera by a longer tail and hyaline region of second-stage juveniles. Phylogenetic relationships within populations and species of Cactodera are given based on the analysis of the internal transcribed spacer (ITS-rRNA), the large subunit of the nuclear ribosomal RNA (28S-rRNA) D2-D3 region and the partial cytochrome oxidase subunit I (COI) gene sequences here. The ITS-rRNA, 28S-rRNA and COI gene sequences clearly differentiated Cactodera xinanensis n. sp. from other species of Cactodera. A key and a morphological identification characteristic table for the species of Cactodera are included in the study.
Vortex shedding in the wake of a cylinder in uniform flow can be suppressed via the application of a porous coating; however, the suppression mechanism is not fully understood. The internal flow field of a porous coated cylinder (PCC) can provide a deeper understanding of how the flow within the porous medium affects the wake development. A structured PCC (SPCC) was three-dimensionally printed using a transparent material and tested in water tunnel facilities using flow visualisation and tomographic particle image velocimetry at outer-diameter Reynolds numbers of $Re = 7 \times 10^{3}$ and $7.3 \times 10^{4}$, respectively. The internal and near-wall flow fields are analysed at the windward and mid-circumference regions. Flow stagnation is observed in the porous layer on the windward side and its boundary is shown to fluctuate with time in the outermost porous layer. This stagnation region generates a quasi-aerodynamic body that influences boundary layer development on the SPCC inner diameter, that separates into a shear layer within the porous medium. For the first time via experiment, spectral content within the separated shear layer reveals vortex shedding processes emanating through single pores at the outer diameter, providing strong evidence that SPCC vortex shedding originates from the inner diameter. Velocity fluctuations linked to this vortex shedding propagate through the porous layers into the external flow field at a velocity less than that of the free stream. The Strouhal number linked to this velocity accurately predicts the SPCC vortex shedding frequency.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
The role of mass loss from massive stars, especially episodic mass loss, is one of the outstanding open questions facing stellar evolution theory. Multiple lines of evidence are pointing to violent, episodic mass-loss events being responsible for removing a large part of the massive stellar envelope, especially in low-metallicity galaxies. The ERC ASSESS project aims to determine whether episodic mass loss is a dominant process in the evolution of the most massive stars by conducting the first extensive, multi-wavelength survey of evolved massive stars in the nearby Universe. The project hinges on the fact that mass-losing stars form dust and are bright in the mid-infrared. We aim to investigate the properties of evolved targets in nearby galaxies and estimate the amount of ejected mass, which will constrain evolutionary models. In this work we present some of our first observational results from the galaxies NGC 6822 and IC 10 obtained with OSIRIS (GTC).
There is evidence that some red supergiants (RSGs) experience phases of episodic mass-loss. These episodes yield more extreme mass-loss rates, further stripping the envelope of the RSG, significantly affecting the further evolution towards the final collapse of the star. Mass lost through RSG outbursts/superwinds will flow outwards and form dust further out from the surface and this dust may be detected and modelled. Here, we aim to derive the surface properties and estimate the global properties of Mid-IR bright RSGs in the Magellanic Clouds. These properties will then be compared to evolutionary predictions and used for future spectral energy distribution fitting studies to measure the mass-loss rates from present circumstellar dust.
Episodic mass loss is not understood theoretically, neither accounted for in state-of-the-art models of stellar evolution, which has far-reaching consequences for many areas of astronomy. We introduce the ERC-funded ASSESS project (2018-2024), which aims to determine whether episodic mass loss is a dominant process in the evolution of the most massive stars, by conducting the first extensive, multi-wavelength survey of evolved massive stars in the nearby Universe. It hinges on the fact that mass-losing stars form dust and are bright in the mid-infrared. We aim to derive physical parameters of ∼1000 dusty, evolved massive stars in ∼25 nearby galaxies and estimate the amount of ejected mass, which will constrain evolutionary models, and quantify the duration and frequency of episodic mass loss as a function of metallicity. The approach involves applying machine-learning algorithms to select dusty, luminous targets from existing multi-band photometry of nearby galaxies. We present the first results of the project, including the machine-learning methodology for target selection and results from our spectroscopic observations so far. The emerging trend for the ubiquity of episodic mass loss, if confirmed, will be key to understanding the explosive early Universe and will have profound consequences for low-metallicity stars, reionization, and the chemical evolution of galaxies.
The epidemic of tuberculosis has posed a serious burden in Qinghai province, it is necessary to clarify the epidemiological characteristics and spatial-temporal distribution of TB for future prevention and control measures. We used descriptive epidemiological methods and spatial statistical analysis including spatial correlation and spatial-temporal analysis in this study. Furthermore, we applied an exponential smoothing model for TB epidemiological trend forecasting. Of 43 859 TB cases, the sex ratio was 1.27:1 (M:F), and the average annual TB registered incidence was 70.00/100 000 of 2009–2019. More cases were reported in March and April, and the worst TB stricken regions were the prefectures of Golog and Yushu. High TB registered incidences were seen in males, farmers and herdsmen, Tibetans, or elderly people. 7132 cases were intractable, which were recurrent, drug resistant, or co-infected with other infections. Three likely cases clusters with significant high risk were found by spatial-temporal scan on data of 2009–2019. The exponential smoothing winters' additive model was selected as the best-fitting model to forecast monthly TB cases in the future. This research indicated that TB in Qinghai is still a serious threaten to the local residents' health. Multi-departmental collaboration and funds special for TB treatments and control are still needed, and the exponential smoothing model is promising which could be applied for forecasting of TB epidemic trend in this high-altitude province.
This work examines the μ(I) relation that describes the effective friction coefficient μ of a dense granular flow as a function of flow inertial number I, at the center of a rotating drum from its flow onset to steady state using DEM. We want to see how the internal friction coefficient of an accelerating flow may be predicted so that the associated tangential stress can be estimated with the proper knowledge of the normal stress. Under the three investigated drum speeds (3, 4.5 and 6 rpm), the bulk normal stress, σn(y), is found to be a consistent linear depth profile throughout the flow development with a slope degraded from the hydrostatic value, Ph(y), due to lateral wall friction. With the discovery of a non-constant depth-decaying effective wall friction coefficient, we derive analytically a wall-degradation factor K(h) to give σn(y)= K(h)Ph(y). The depth profile of tangential stress, however, varies in time from a concave shape upon acceleration, τa(y), to a more linear trend at the steady state, τss(y). Hence, the μa-Ia profile (with μa=τ/σn) upon flow acceleration offsets from the steady μss(Iss) relation. A pseudo-steady acceleration modification number, ΔI, is proposed to shift the inertial number in the acceleration phase to I* = Ia+ΔI so that the μa-I* data converge to μss(Iss). This finding shall allow us to predict a transient tangential stress by τa(y) = μss(I*)K(y)Ph(y) using the well-accepted knowledge of steady flow rheology, hydrostatic pressure, and the currently developed wall-degradation factor.
Klebsiella pneumoniae is a common pathogen associated with nosocomial infections and is characterised serologically by capsular polysaccharide (K) and lipopolysaccharide O antigens. We surveyed a total of 348 non-duplicate K. pneumoniae clinical isolates collected over a 1-year period in a tertiary care hospital, and determined their O and K serotypes by sequencing of the wbb Y and wzi gene loci, respectively. Isolates were also screened for antimicrobial resistance and hypervirulent phenotypes; 94 (27.0%) were identified as carbapenem-resistant (CRKP) and 110 (31.6%) as hypervirulent (hvKP). isolates fell into 58 K, and six O types, with 92.0% and 94.2% typeability, respectively. The predominant K types were K14K64 (16.38%), K1 (14.66%), K2 (8.05%) and K57 (5.46%), while O1 (46%), O2a (27.9%) and O3 (11.8%) were the most common. CRKP and hvKP strains had different serotype distributions with O2a:K14K64 (41.0%) being the most frequent among CRKP, and O1:K1 (26.4%) and O1:K2 (17.3%) among hvKP strains. Serotyping by gene sequencing proved to be a useful tool to inform the clinical epidemiology of K. pneumoniae infections and provides valuable data relevant to vaccine design.
In this paper, the generation of relativistic electron mirrors (REM) and the reflection of an ultra-short laser off the mirrors are discussed, applying two-dimension particle-in-cell simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapid expansion. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads to the resonance between laser and REM. The reflected radiation near this interval and corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, a certain part of the reflected field could be selectively amplified or depressed, leading to the selective adjustment of the corresponding spectra.
Current available antidepressants exhibit low remission rate with a long response lag time. Growing evidence has demonstrated acute sub-anesthetic dose of ketamine exerts rapid, robust, and lasting antidepressant effects. However, a long term use of ketamine tends to elicit its adverse reactions. The present study aimed to investigate the antidepressant-like effects of intermittent and consecutive administrations of ketamine on chronic unpredictable mild stress (CUMS) rats, and to determine whether ketamine can redeem the time lag for treatment response of classic antidepressants. The behavioral responses were assessed by the sucrose preference test, forced swimming test, and open field test. In the first stage of experiments, all the four treatment regimens of ketamine (10 mg/kg ip, once daily for 3 or 7 consecutive days, or once every 7 or 3 days, in a total 21 days) showed robust antidepressant-like effects, with no significant influence on locomotor activity and stereotype behavior in the CUMS rats. The intermittent administration regimens produced longer antidepressant-like effects than the consecutive administration regimens and the administration every 7 days presented similar antidepressant-like effects with less administration times compared with the administration every 3 days. In the second stage of experiments, the combination of ketamine (10 mg/kg ip, once every 7 days) and citalopram (20 mg/kg po, once daily) for 21 days caused more rapid and sustained antidepressant-like effects than citalopram administered alone. In summary, repeated sub-anesthestic doses of ketamine can redeem the time lag for the antidepressant-like effects of citalopram, suggesting the combination of ketamine and classic antidepressants is a promising regimen for depression with quick onset time and stable and lasting effects.
Tuberculosis (TB) is the leading cause of death among infectious diseases. China has a high burden of TB and accounted for almost 13% of the world's cases of multi-drug resistant (MDR) TB. Spinal TB is one reason for the resurgence of TB in China. Few large case studies of MDR spinal TB in China have been conducted. The aim of this research was to observe the epidemiological characteristics of inpatients with MDR spinal TB in six provinces and cities of China from 1999–2015. This is a multicentre retrospective observational study. Patients' information was collected from the control disease centre and infectious disease database of hospitals in six provinces and cities in China. A total of 3137 patients with spinal TB and 272 patients with MDR spinal TB were analysed. The result showed that MDR spinal TB remains a public health concern and commonly affects patients 15–30 years of age (34.19%). The most common lesions involved the thoracolumbar spine (35.66%). Local pain was the most common symptom (98.53%). Logistic analysis showed that for spinal TB patients, reside in rural district (OR 1.79), advanced in years (OR 1.92) and high education degree (OR 2.22) were independent risk factors for the development of MDR spinal TB. Women were associated with a lower risk of MDR spinal TB (OR 0.48). The most common first-line and second-line resistant drug was isoniazid (68.75%) and levofloxacin (29.04%), respectively. The use of molecular diagnosis resulted in noteworthy clinical advances, including earlier initiation of MDR spinal TB treatment, improved infection control and better clinical outcome. Chemotherapy and surgery can yield satisfactory outcomes with timely diagnosis and long-term treatment. These results enable a better understanding of the MDR spinal TB in China among the general public.
Depth-integrated mathematical models for simulating waves and currents from deep to shallow water are presented. These models are derived from Euler’s equations in the $\unicode[STIX]{x1D70E}$-coordinate system, mapping the total water depth in Cartesian coordinates onto a specified range of $\unicode[STIX]{x1D70E}$-coordinates. The horizontal velocity is approximated as a truncated infinite series of products of prescribed shape functions of $\unicode[STIX]{x1D70E}$ and unknown functions of horizontal coordinates and time. Adopting the method of weighted residuals, the new models are obtained by minimizing the residuals of the horizontal momentum equations with either the Galerkin method or the subdomain method. These models’ linear and nonlinear water wave properties are investigated. The new models are implemented numerically. A hierarchy of numerical models with different degree of polynomial approximation is developed and checked against several benchmarked experiments and a new set of experiments of self-focusing wave groups. For both the Galerkin and subdomain models, excellent agreements are observed for both the free surface elevations and the velocity profiles. The new models are superior to the existing Boussinesq-type models for their applicability to a wide range of physical scenarios, including the interactions between a wave package of multiple frequency components and a linearly sheared current. The new Galerkin models have similar characteristics and accuracy as the Green–Naghdi models, but the new models are more efficient computationally. Finally, for the same degree of polynomial approximation the subdomain models perform better than the Galerkin models and require less computational time.
Small intestinal epithelium homeostasis involves four principal cell types: enterocytes, goblet, enteroendocrine and Paneth cells. Epidermal growth factor (EGF) has been shown to affect enterocyte differentiation. This study determined the effect of dietary EGF on goblet, enteroendocrine and Paneth cell differentiation in piglet small intestine and potential mechanisms. Forty-two weaned piglets were used in a 2 × 3 factorial design; the major factors were time post-weaning (days 7 and 14) and dietary treatment (0, 200 or 400 µg/kg EGF supplementation). The numbers of goblet and enteroendocrine cells were generally greater with the increase in time post-weaning. Moreover, the supplementation of 200 µg/kg EGF increased (P < 0.01) the number of goblet and enteroendocrine cells in villus and crypt of the piglet small intestine as compared with the control. Dietary supplementation with 200 µg/kg EGF enhanced (P < 0.05) abundances of differentiation-related genes atonal homologue 1, mucin 2 and intestinal trefoil factor 3 messenger RNA (mRNA) as compared with the control. Piglets fed 200 or 400 µg/kg EGF diet had increased (P < 0.05) abundances of growth factor-independent 1, SAM pointed domain containing ETS transcription factor and pancreatic and duodenal homeobox 1 mRNA, but decreased the abundance (P < 0.01) of E74 like ETS transcription factor 3 mRNA as compared with the control. Animals receiving 400 µg/kg EGF diets had enhanced (P < 0.05) abundances of neurogenin3 and SRY-box containing gene 9 mRNA as compared with the control. The mRNA abundance and protein expression of lysozyme, a marker of Paneth cell, were also increased (P < 0.05) in those animals. As compared with the control, dietary supplementation with 200 µg/kg EGF increased the abundance of EGF receptor mRNA and the ratio of non-phospho(p)-β-catenin/β-catenin (P < 0.05) in villus epithelial cells at days 7 and 14. This ratio in crypt epithelial cells was higher (P < 0.05) on the both 200 and 400 µg/kg EGF groups during the same period. Our results demonstrated that dietary EGF stimulated goblet, enteroendocrine and Paneth cell differentiation in piglets during the post-weaning period, partly through EGFR and Wnt/β-catenin signalling.
Some studies have shown that the excessive metabolic heat production is the primary cause for dead chicken embryos during late embryonic development. Increasing heat shock protein (HSP) expression and adjusting metabolism are important ways to maintain body homeostasis under heat stress. This study was conducted to investigate the effects of in ovo injection (IOI) of vitamin C (VC) at embryonic age 11th day (E11) on HSP and metabolic genes expression. A total of 320 breeder eggs were randomly divided into normal saline and VC injection groups. We detected plasma VC content and rectal temperature at chick’s age 1st day, and the mRNA levels of HSP and metabolic genes in embryonic livers at E14, 16 and 18, analysed the promoter methylation levels of differentially expressed genes and predicted transcription factors at the promoter regions. The results showed that IOI of VC significantly increased plasma VC content and decreased rectal temperature (P < 0.05). In ovo injection of VC significantly increased heat shock protein 60 (HSP60) and pyruvate dehydrogenase kinase 4 (PDK4) genes expression at E16 and PDK4 and secreted frizzled related protein 1 (SFRP1) at E18 (P < 0.05). At E16, IOI of VC significantly decreased the methylation levels of total CpG sites and −336 CpG site in HSP60 promoter and −1137 CpG site in PDK4 promoter (P < 0.05). Potential binding sites for nuclear factor-1 were found around −389 and −336 CpG sites in HSP60 promoter and potential binding site for specificity protein 1 was found around −1137 CpG site in PDK4 promoter. Our results suggested that IOI of VC increased HSP60, PDK4 and SFRP1 genes expression at E16 and 18, which may be associated with the demethylation in gene promoters. Whether IOI of VC could improve hatchability needs to be further verified by setting uninjection group.
Triploid and pentaploid breeding is of great importance in agricultural production, but it is not always easy to obtain double ploidy parents. However, in fishes, chromosome ploidy is diversiform, which may provide natural parental resources for triploid and pentaploid breeding. Both tetraploid and hexaploid exist in Schizothorax fishes, which were thought to belong to different subfamilies with tetraploid Percocypris fishes in morphology, but they are sister genera in molecule. Fortunately, the pentaploid hybrid fishes have been successfully obtained by hybridization of Schizothorax wangchiachii (♀, 2n = 6X = 148) × Percocypris pingi (♂, 2n = 4X = 98). To understand the genetic and morphological difference among the hybrid fishes and their parents, four methods were used in this study: morphology, karyotype, red blood cell (RBC) DNA content determination and inter-simple sequence repeat (ISSR). In morphology, the hybrid fishes were steady, and between their parents with no obvious preference. The chromosome numbers of P. pingi have been reported as 2n = 4X = 98. In this study, the karyotype of S. wangchiachii was 2n = 6X = 148 = 36m + 34sm + 12st + 66t, while that the hybrid fishes was 2n = 5X = 123 = 39m + 28sm + 5st + 51t. Similarly, the RBC DNA content of the hybrid fishes was intermediate among their parents. In ISSR, the within-group genetic diversity of hybrid fishes was higher than that of their parents. Moreover, the genetic distance of hybrid fishes between P. pingi and S.wangchiachii was closely related to that of their parental ploidy, suggesting that parental genetic material stably coexisted in the hybrid fishes. This is the first report to show a stable pentaploid F1 hybrids produced by hybridization of a hexaploid and a tetraploid in aquaculture.
Heading date (HD) and flowering date (FD) are critical for yield potential and stability, so understanding their genetic foundation is of great significance in wheat breeding. Three related recombinant inbred line populations with a common female parent were developed to identify quantitative trait loci (QTL) for HD and FD in four environments. In total, 25 putative additive QTL and 20 pairwise epistatic effect QTL were detected in four environments. The additive QTL were distributed across 17 wheat chromosomes. Of these, QHd-1A, QHd-1D, QHd-2B, QHd-3B, QHd-4A, QHd-4B and QHd-6D were major and stable QTL for HD. QFd-1A, QFd-2B, QFd-4A and QFd-4B were major and stable QTL for FD. In addition, an epistatic interaction test showed that epistasis played important roles in controlling wheat HD and FD. Genetic relationships between HD/FD and five yield-related traits (YRTs) were characterized and ten QTL clusters (C1–C10) simultaneously controlling YRTs and HD/FD were identified. The present work laid a genetic foundation for improving yield potential in wheat molecular breeding programmes.
Hypoimmunity and numerous stresses are two major challenges in broiler industry. Nutrient intervention at the specific time of embryonic stage is a feasible way to improve animal performance. This study was conducted to investigate the possible effects of in ovo feeding (IOF) of vitamin C at embryonic age 15th day (E15) on growth performance, antioxidation and immune function of broilers. A total of 240 broiler fertile eggs were randomly divided into two groups (0 and 3 mg injected dose of vitamin C at E15), and new-hatched chicks from each treatment were randomly allocated into six replicates with 10 chicks per replicate after incubation. The results indicated that in ovo vitamin C injection improved the hatchability (P < 0.05) and increased immunoglobulin M (IgM) (at the broiler’s age 1st day, D1), IgG and IgM concentrations (D21), as well as lysozyme activity (D21, P < 0.05) and total antioxidant capacity (D42, P < 0.01) in plasma of broilers. On D21, the splenic expression level of DNA methyltransferase 1 (DNMT1) was up-regulated in vitamin C (VC) group, whereas interleukin (IL)-6, interferon-γ, ten-eleven translocation protein 1 and thymine-DNA glycosylase were down-regulated (P < 0.05). On D42, in ovo vitamin C injection up-regulated splenic expression levels of DNMT1, DNA methyltransferase 3B (DNMT3B) and growth arrest and DNA-damage-inducible protein beta (P < 0.05), whereas down-regulated splenic expression levels of IL-6, tumour necrosis factor-α and methyl-CpG-binding domain protein 4 (P < 0.05). Our findings suggested that IOF of 3 mg vitamin C at E15 could improve, to some extent, the antioxidant activity and immune function in plasma, corresponding with the lower expression of pro-inflammatory cytokines in spleen. However, IOF of vitamin C leading to the changes in the expression of DNA methyltransferases and demethylases may suggest an increased trend of DNA methylation level in spleen and whether DNA methylation variation is associated with the lower expression of pro-inflammatory cytokines in spleen warrants future study.