To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathcal {S}$ denote the class of univalent functions in the open unit disc $\mathbb {D}:=\{z\in \mathbb {C}:\, |z|<1\}$ with the form $f(z)= z+\sum _{n=2}^{\infty }a_n z^n$. The logarithmic coefficients $\gamma _{n}$ of $f\in \mathcal {S}$ are defined by $F_{f}(z):= \log (f(z)/z)=2\sum _{n=1}^{\infty }\gamma _{n}z^{n}$. The second Hankel determinant for logarithmic coefficients is defined by
For $-1\leq B \lt A\leq 1$, let $\mathcal{C}(A,B)$ denote the class of normalized Janowski convex functions defined in the unit disk $\mathbb{D}:=\{z\in\mathbb{C}:|z| \lt 1\}$ that satisfy the subordination relation $1+zf''(z)/f'(z)\prec (1+Az)/(1+Bz)$. In the present article, we determine the sharp estimate of the Schwarzian norm for functions in the class $\mathcal{C}(A,B)$. The Dieudonné’s lemma which gives the exact region of variability for derivatives at a point of bounded functions, plays the key role in this study, and we also use this lemma to construct the extremal functions for the sharpness by a new method.
Let $\mathcal {K}_u$ denote the class of all analytic functions f in the unit disk $\mathbb {D}:=\{z\in \mathbb {C}:|z|<1\}$, normalised by $f(0)=f'(0)-1=0$ and satisfying $|zf'(z)/g(z)-1|<1$ in $\mathbb {D}$ for some starlike function g. Allu, Sokól and Thomas [‘On a close-to-convex analogue of certain starlike functions’, Bull. Aust. Math. Soc.108 (2020), 268–281] obtained a partial solution for the Fekete–Szegö problem and initial coefficient estimates for functions in $\mathcal {K}_u$, and posed a conjecture in this regard. We prove this conjecture regarding the sharp estimates of coefficients and solve the Fekete–Szegö problem completely for functions in the class $\mathcal {K}_u$.
For a domain G in the one-point compactification $\overline{\mathbb{R}}^n = {\mathbb{R}}^n \cup \{ \infty\}$ of ${\mathbb{R}}^n, n \geqslant 2$, we characterise the completeness of the modulus metric $\mu_G$ in terms of a potential-theoretic thickness condition of $\partial G\,,$ Martio’s M-condition [35]. Next, we prove that $\partial G$ is uniformly perfect if and only if $\mu_G$ admits a minorant in terms of a Möbius invariant metric. Several applications to quasiconformal maps are given.
Let f be analytic in the unit disk $\mathbb {D}=\{z\in \mathbb {C}:|z|<1 \}$ and let ${\mathcal S}$ be the subclass of normalised univalent functions with $f(0)=0$ and $f'(0)=1$, given by $f(z)=z+\sum _{n=2}^{\infty }a_n z^n$. Let F be the inverse function of f, given by $F(\omega )=\omega +\sum _{n=2}^{\infty }A_n \omega ^n$ for $|\omega |\le r_0(f)$. Denote by $ \mathcal {S}_p^{* }(\alpha )$ the subset of $ \mathcal {S}$ consisting of the spirallike functions of order $\alpha $ in $\mathbb {D}$, that is, functions satisfying
for $z\in \mathbb {D}$, $0\le \alpha <1$ and $\gamma \in (-\pi /2,\pi /2)$. We give sharp upper and lower bounds for both $ |a_3|-|a_2| $ and $ |A_3|-|A_2| $ when $f\in \mathcal {S}_p^{* }(\alpha )$, thus solving an open problem and presenting some new inequalities for coefficient differences.
For $n\geq 3$, let $Q_n\subset \mathbb {C}$ be an arbitrary regular n-sided polygon. We prove that the Cauchy transform $F_{Q_n}$ of the normalised two-dimensional Lebesgue measure on $Q_n$ is univalent and starlike but not convex in $\widehat {\mathbb {C}}\setminus Q_n$.
Let $f$ be analytic in the unit disk $\mathbb{D}=\{z\in \mathbb{C}:|z|<1\}$ and ${\mathcal{S}}$ be the subclass of normalised univalent functions given by $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$ for $z\in \mathbb{D}$. We give sharp upper and lower bounds for $|a_{3}|-|a_{2}|$ and other related functionals for the subclass ${\mathcal{F}}_{O}(\unicode[STIX]{x1D706})$ of Ozaki close-to-convex functions.
For $f$ analytic in the unit disk $\mathbb{D}$, we consider the close-to-convex analogue of a class of starlike functions introduced by R. Singh [‘On a class of star-like functions’, Compos. Math.19(1) (1968), 78–82]. This class of functions is defined by $|zf^{\prime }(z)/g(z)-1|<1$ for $z\in \mathbb{D}$, where $g$ is starlike in $\mathbb{D}$. Coefficient and other results are obtained for this class of functions.
Let ${\mathcal{S}}$ be the family of analytic and univalent functions $f$ in the unit disk $\mathbb{D}$ with the normalization $f(0)=f^{\prime }(0)-1=0$, and let $\unicode[STIX]{x1D6FE}_{n}(f)=\unicode[STIX]{x1D6FE}_{n}$ denote the logarithmic coefficients of $f\in {\mathcal{S}}$. In this paper we study bounds for the logarithmic coefficients for certain subfamilies of univalent functions. Also, we consider the families ${\mathcal{F}}(c)$ and ${\mathcal{G}}(c)$ of functions $f\in {\mathcal{S}}$ defined by
for some $c\in (0,3]$ and $c\in (0,1]$, respectively. We obtain the sharp upper bound for $|\unicode[STIX]{x1D6FE}_{n}|$ when $n=1,2,3$ and $f$ belongs to the classes ${\mathcal{F}}(c)$ and ${\mathcal{G}}(c)$, respectively. The paper concludes with the following two conjectures:
∙ If $f\in {\mathcal{F}}(-1/2)$, then $|\unicode[STIX]{x1D6FE}_{n}|\leq 1/n(1-(1/2^{n+1}))$ for $n\geq 1$, and
Let $f$ be analytic in $\mathbb{D}=\{z\in \mathbb{C}:|z|<1\}$ and given by $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$. We give sharp bounds for the initial coefficients of the Taylor expansion of such functions in the class of strongly Ozaki close-to-convex functions, and of the initial coefficients of the inverse function, together with some growth estimates.
Let ${\mathcal{S}}$ denote the class of analytic and univalent functions in $\mathbb{D}:=\{z\in \mathbb{C}:|z|<1\}$ which are of the form $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$. We determine sharp estimates for the Toeplitz determinants whose elements are the Taylor coefficients of functions in ${\mathcal{S}}$ and certain of its subclasses. We also discuss similar problems for typically real functions.
We study properties of the simply connected sets in the complex plane, which are finite unions of domains convex in the horizontal direction. These considerations allow us to state new univalence criteria for complex-valued local homeomorphisms. In particular, we apply our results to planar harmonic mappings obtaining generalisations of the shear construction theorem due to Clunie and Sheil-Small [‘Harmonic univalent functions’, Ann. Acad. Sci. Fenn. Ser. A. I. Math.9 (1984), 3–25].
The logarithmic coefficients $\unicode[STIX]{x1D6FE}_{n}$ of an analytic and univalent function $f$ in the unit disc $\mathbb{D}=\{z\in \mathbb{C}:|z|<1\}$ with the normalisation $f(0)=0=f^{\prime }(0)-1$ are defined by $\log (f(z)/z)=2\sum _{n=1}^{\infty }\unicode[STIX]{x1D6FE}_{n}z^{n}$. In the present paper, we consider close-to-convex functions (with argument 0) with respect to odd starlike functions and determine the sharp upper bound of $|\unicode[STIX]{x1D6FE}_{n}|$, $n=1,2,3$, for such functions $f$.
In this paper, we study quasiconformal extensions of harmonic mappings. Utilizing a complex parameter, we build a bridge between the quasiconformal extension theorem for locally analytic functions given by Ahlfors [‘Sufficient conditions for quasiconformal extension’, Ann. of Math. Stud.79 (1974), 23–29] and the one for harmonic mappings recently given by Hernández and Martín [‘Quasiconformal extension of harmonic mappings in the plane’, Ann. Acad. Sci. Fenn. Math.38 (2) (2013), 617–630]. We also give a quasiconformal extension of a harmonic Teichmüller mapping, whose maximal dilatation estimate is asymptotically sharp.
Clunie and Sheil-Small [‘Harmonic univalent functions’, Ann. Acad. Sci. Fenn. Ser. A. I. Math.9 (1984), 3–25] gave a simple and useful univalence criterion for harmonic functions, usually called the shear construction. However, the application of this theorem is limited to planar harmonic mappings that are convex in the horizontal direction. In this paper, a natural generalisation of the shear construction is given. More precisely, our results are obtained under the hypothesis that the image of a harmonic function is a union of two sets that are convex in the horizontal direction.
We consider a recent work of Pascu and Pascu [‘Neighbourhoods of univalent functions’, Bull. Aust. Math. Soc.83(2) (2011), 210–219] and rectify an error that appears in their work. In addition, we study certain analogous results for sense-preserving harmonic mappings in the unit disc $\vert z\vert \lt 1$. As a corollary to this result, we derive a coefficient condition for a sense-preserving harmonic mapping to be univalent in $\vert z\vert \lt 1$.
Let $p(z)= z{f}^{\prime } (z)/ f(z)$ for a function $f(z)$ analytic on the unit disc $\mid z\mid \lt 1$ in the complex plane and normalised by $f(0)= 0, {f}^{\prime } (0)= 1$. We provide lower and upper bounds for the best constants ${\delta }_{0} $ and ${\delta }_{1} $ such that the conditions ${e}^{- {\delta }_{0} / 2} \lt \mid p(z)\mid \lt {e}^{{\delta }_{0} / 2} $ and $\mid p(w)/ p(z)\mid \lt {e}^{{\delta }_{1} } $ for $\mid z\mid , \mid w\mid \lt 1$ respectively imply univalence of $f$ on the unit disc.
The main result shows that a small perturbation of a univalent function is again a univalent function, hence a univalent function has a neighbourhood consisting entirely of univalent functions. For the particular choice of a linear function in the hypothesis of the main theorem, we obtain a corollary which is equivalent to the classical Noshiro–Warschawski–Wolff univalence criterion. We also present an application of the main result in terms of Taylor series, and we show that the hypothesis of our main result is sharp.