We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a class of potentials $\psi $ satisfying a condition depending on the roof function of a suspension (semi)flow, we show an EKP inequality, which can be interpreted as a Hölder continuity property in the weak${^*}$ norm of measures, with respect to the pressure of those measures, where the Hölder exponent depends on the $L^q$-space to which $\psi $ belongs. This also captures a new type of phase transition for intermittent (semi)flows (and maps).
The topological structure of ‘mean dichotomy spectrum’ is shown in this article, as an extension of Sacker–Sell spectrum and non-uniform dichotomy spectrum. With regard to mean hyperbolic systems, the coexistence of expansion and contraction behaviours can lead to non-hyperbolic phenomena during evolution process. To be precise, distinct from uniform and non-uniform hyperbolic cases, error hyperbolic degree $\varepsilon(t,\tau)$ is vital to depict the spectral manifolds. As application, the reducibility theorem for mean hyperbolic systems is provided to deduce block diagonalization.
Anosov automorphisms with Jordan blocks are not periodic data rigid. We introduce a refinement of the periodic data and show that this refined periodic data characterizes $C^{1+}$ conjugacy for Anosov automorphisms on $\mathbb {T}^4$ with a Jordan block.
We perform a multifractal analysis of homological growth rates of oriented geodesics on hyperbolic surfaces. Our main result provides a formula for the Hausdorff dimension of level sets of prescribed growth rates in terms of a generalized Poincaré exponent of the Fuchsian group. We employ symbolic dynamics developed by Bowen and Series, ergodic theory and thermodynamic formalism to prove the analyticity of the dimension spectrum.
Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism $f:M\rightarrow M$ on an open invariant subset $O\subset M$, which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto a subset of O that carries the same finite f-invariant measures as O. Our method relies upon shadowing theory of a recurrent-pointwise-pseudo-orbit that we introduce. As a canonical application, we estimate the number of closed orbits for f.
Let $f: M\rightarrow M$ be a $C^{1+\alpha }$ diffeomorphism on an $m_0$-dimensional compact smooth Riemannian manifold M and $\mu $ a hyperbolic ergodic f-invariant probability measure. This paper obtains an upper bound for the stable (unstable) pointwise dimension of $\mu $, which is given by the unique solution of an equation involving the sub-additive measure-theoretic pressure. If $\mu $ is a Sinai–Ruelle–Bowen (SRB) measure, then the Kaplan–Yorke conjecture is true under some additional conditions and the Lyapunov dimension of $\mu $ can be approximated gradually by the Hausdorff dimension of a sequence of hyperbolic sets $\{\Lambda _n\}_{n\geq 1}$. The limit behaviour of the Carathéodory singular dimension of $\Lambda _n$ on the unstable manifold with respect to the super-additive singular valued potential is also studied.
Given a dynamical system, we prove that the shortest distance between two n-orbits scales like n to a power even when the system has slow mixing properties, thus building and improving on results of Barros, Liao and the first author [On the shortest distance between orbits and the longest common substring problem. Adv. Math.344 (2019), 311–339]. We also extend these results to flows. Finally, we give an example for which the shortest distance between two orbits has no scaling limit.
For smooth random dynamical systems we consider the quenched linear and higher-order response of equivariant physical measures to perturbations of the random dynamics. We show that the spectral perturbation theory of Gouëzel, Keller and Liverani [28, 33], which has been applied to deterministic systems with great success, may be adapted to study random systems that possess good mixing properties. As a consequence, we obtain general linear and higher-order response results, as well as the differentiability of the variance in quenched central limit theorems (CLTs), for random dynamical systems (RDSs) that we then apply to random Anosov diffeomorphisms and random U(1) extensions of expanding maps. We emphasize that our results apply to random dynamical systems over a general ergodic base map, and are obtained without resorting to infinite-dimensional multiplicative ergodic theory.
For a non-conformal repeller $\Lambda $ of a $C^{1+\alpha }$ map f preserving an ergodic measure $\mu $ of positive entropy, this paper shows that the Lyapunov dimension of $\mu $ can be approximated gradually by the Carathéodory singular dimension of a sequence of horseshoes. For a $C^{1+\alpha }$ diffeomorphism f preserving a hyperbolic ergodic measure $\mu $ of positive entropy, if $(f, \mu )$ has only two Lyapunov exponents $\unicode{x3bb} _u(\mu )>0>\unicode{x3bb} _s(\mu )$, then the Hausdorff or lower box or upper box dimension of $\mu $ can be approximated by the corresponding dimension of the horseshoes $\{\Lambda _n\}$. The same statement holds true if f is a $C^1$ diffeomorphism with a dominated Oseledet’s splitting with respect to $\mu $.
In the context of discrete nonautonomous dynamics, we prove that the homeomorphisms in the linearization theorem are $C^2$ diffeomorphisms. In contrast to other related works, our result does not involve non-resonance conditions or spectral gaps. Our approach is based on the interlacing of the properties of nonautonomous hyperbolicity of the linear part, and boundedness and Lipschitzness of the nonlinearities. Moreover, we propose a functional approach to find conditions for regularity of arbitrary degree.
We extend Katok’s result on ‘the approximation of hyperbolic measures by horseshoes’ to Banach cocycles. More precisely, let f be a $C^r(r>1)$ diffeomorphism of a compact Riemannian manifold M, preserving an ergodic hyperbolic measure $\mu $ with positive entropy, and let $\mathcal {A}$ be a Hölder continuous cocycle of bounded linear operators acting on a Banach space $\mathfrak {X}$. We prove that there is a sequence of horseshoes for f and dominated splittings for $\mathcal {A}$ on the horseshoes, such that not only the measure theoretic entropy of f but also the Lyapunov exponents of $\mathcal {A}$ with respect to $\mu $ can be approximated by the topological entropy of f and the Lyapunov exponents of $\mathcal {A}$ on the horseshoes, respectively. As an application, we show the continuity of sub-additive topological pressure for Banach cocycles.
For typical cocycles over subshifts of finite type, we show that for any given orbit segment, we can construct a periodic orbit such that it shadows the given orbit segment and that the product of the cocycle along its orbit is a proximal linear map. Using this result, we show that suitable assumptions on the periodic orbits have consequences over the entire subshift.
In this paper, we study the ergodicity of the geodesic flows on surfaces with no focal points. Let M be a smooth connected and closed surface equipped with a $C^{\infty }$ Riemannian metric g, whose genus $\mathfrak {g} \geq 2$. Suppose that $(M,g)$ has no focal points. We prove that the geodesic flow on the unit tangent bundle of M is ergodic with respect to the Liouville measure, under the assumption that the set of points on M with negative curvature has at most finitely many connected components.
We consider a robust class of random non-uniformly expanding local homeomorphisms and Hölder continuous potentials with small variation. For each element of this class we develop the thermodynamical formalism and prove the existence and uniqueness of equilibrium states among non-uniformly expanding measures. Moreover, we show that these equilibrium states and the random topological pressure vary continuously in this setting.
For a $C^{1+\alpha }$ diffeomorphism f of a compact smooth manifold, we give a necessary and sufficient condition that guarantees that if the set of hyperbolic Lyapunov–Perron regular points has positive volume, then f preserves a smooth measure. We use recent results on symbolic coding of $\chi $-non-uniformly hyperbolic sets and results concerning the existence of SRB measures for them.
In this paper we study Zimmer's conjecture for $C^{1}$ actions of lattice subgroup of a higher-rank simple Lie group with finite center on compact manifolds. We show that when the rank of an uniform lattice is larger than the dimension of the manifold, then the action factors through a finite group. For lattices in ${\rm SL}(n, {{\mathbb {R}}})$, the dimensional bound is sharp.
We construct an invariant measure for a piecewise analytic interval map whose Lyapunov exponent is not defined. Moreover, for a set of full measure, the pointwise Lyapunov exponent is not defined. This map has a Lorenz-like singularity and non-flat critical points.
We outline the flexibility program in smooth dynamics, focusing on flexibility of Lyapunov exponents for volume-preserving diffeomorphisms. We prove flexibility results for Anosov diffeomorphisms admitting dominated splittings into one-dimensional bundles.
We develop a thermodynamic formalism for a smooth realization of pseudo-Anosov surface homeomorphisms. In this realization, the singularities of the pseudo-Anosov map are assumed to be fixed, and the trajectories are slowed down so the differential is the identity at these points. Using Young towers, we prove existence and uniqueness of equilibrium states for geometric t-potentials. This family of equilibrium states includes a unique SRB measure and a measure of maximal entropy, the latter of which has exponential decay of correlations and the central limit theorem.