We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let W be a symplectic manifold, and let $\phi :W \to W$ be a symplectic automorphism. This automorphism induces an auto-equivalence $\Phi $ defined on the Fukaya category of W. In this paper, we prove that the categorical entropy of $\Phi $ provides a lower bound for the topological entropy of $\phi $, where W is a Weinstein manifold and $\phi $ is compactly supported. Furthermore, motivated by [cCGG24], we propose a conjecture that generalizes the result of [New88, Prz80, Yom87].
We give a mathematically precise statement of the SYZ conjecture between mirror space pairs and prove it for any toric Calabi-Yau manifold with the Gross Lagrangian fibration. To date, it is the first time we realize the SYZ proposal with singular fibers beyond the topological level. The dual singular fibration is explicitly written and proved to be compatible with the family Floer mirror construction. Moreover, we discover that the Maurer-Cartan set of a singular Lagrangian is only a strict subset of the corresponding dual singular fiber. This responds negatively to the previous expectation and leads to new perspectives of SYZ singularities. As extra evidence, we also check some computations for a well-known folklore conjecture for the Landau-Ginzburg model.
Let $X$ denote the ‘conifold smoothing’, the symplectic Weinstein manifold which is the complement of a smooth conic in $T^*S^3$ or, equivalently, the plumbing of two copies of $T^*S^3$ along a Hopf link. Let $Y$ denote the ‘conifold resolution’, by which we mean the complement of a smooth divisor in $\mathcal {O}(-1) \oplus \mathcal {O}(-1) \to \mathbb {P}^1$. We prove that the compactly supported symplectic mapping class group of $X$ splits off a copy of an infinite-rank free group, in particular is infinitely generated; and we classify spherical objects in the bounded derived category $D(Y)$ (the three-dimensional ‘affine $A_1$-case’). Our results build on work of Chan, Pomerleano and Ueda and Toda, and both theorems make essential use of working on the ‘other side’ of the mirror.
A complete embedding is a symplectic embedding $\iota :Y\to M$ of a geometrically bounded symplectic manifold $Y$ into another geometrically bounded symplectic manifold $M$ of the same dimension. When $Y$ satisfies an additional finiteness hypothesis, we prove that the truncated relative symplectic cohomology of a compact subset $K$ inside $Y$ is naturally isomorphic to that of its image $\iota (K)$ inside $M$. Under the assumption that the torsion exponents of $K$ are bounded, we deduce the same result for relative symplectic cohomology. We introduce a technique for constructing complete embeddings using what we refer to as integrable anti-surgery. We apply these to study symplectic topology and mirror symmetry of symplectic cluster manifolds and other examples of symplectic manifolds with singular Lagrangian torus fibrations satisfying certain completeness conditions.
We study the Rouquier dimension of wrapped Fukaya categories of Liouville manifolds and pairs, and apply this invariant to various problems in algebraic and symplectic geometry. On the algebro-geometric side, we introduce a new method based on symplectic flexibility and mirror symmetry to bound the Rouquier dimension of derived categories of coherent sheaves on certain complex algebraic varieties and stacks. These bounds are sharp in dimension at most $3$. As an application, we resolve a well-known conjecture of Orlov for new classes of examples (e.g. toric $3$-folds, certain log Calabi–Yau surfaces). We also discuss applications to non-commutative motives on partially wrapped Fukaya categories. On the symplectic side, we study various quantitative questions including the following. (1) Given a Weinstein manifold, what is the minimal number of intersection points between the skeleton and its image under a generic compactly supported Hamiltonian diffeomorphism? (2) What is the minimal number of critical points of a Lefschetz fibration on a Liouville manifold with Weinstein fibers? We give lower bounds for these quantities which are to the best of the authors’ knowledge the first to go beyond the basic flexible/rigid dichotomy.
We define a new family of spectral invariants associated to certain Lagrangian links in compact and connected surfaces of any genus. We show that our invariants recover the Calabi invariant of Hamiltonians in their limit. As applications, we resolve several open questions from topological surface dynamics and continuous symplectic topology: We show that the group of Hamiltonian homeomorphisms of any compact surface with (possibly empty) boundary is not simple; we extend the Calabi homomorphism to the group of hameomorphisms constructed by Oh and Müller, and we construct an infinite-dimensional family of quasi-morphisms on the group of area and orientation preserving homeomorphisms of the two-sphere.
Our invariants are inspired by recent work of Polterovich and Shelukhin defining and applying spectral invariants, via orbifold Floer homology, for links composed of parallel circles in the two-sphere. A particular feature of our work is that it avoids the orbifold setting and relies instead on ‘classical’ Floer homology. This not only substantially simplifies the technical background but seems essential for some aspects (such as the application to constructing quasi-morphisms).
The aim of this article is to apply a Floer theory to study symmetric periodic Reeb orbits. We define positive equivariant wrapped Floer homology using a (anti-)symplectic involution on a Liouville domain and investigate its algebraic properties. By a careful analysis of index iterations, we obtain a non-trivial lower bound on the minimal number of geometrically distinct symmetric periodic Reeb orbits on a certain class of real contact manifolds. This includes non-degenerate real dynamically convex star-shaped hypersurfaces in ${\mathbb {R}}^{2n}$ which are invariant under complex conjugation. As a result, we give a partial answer to the Seifert conjecture on brake orbits in the contact setting.
We show that a monotone Lagrangian L in ${\mathbb{C}}{\mathbb{P}}^n$ of minimal Maslov number n + 1 is homeomorphic to a double quotient of a sphere, and thus homotopy equivalent to ${\mathbb{R}}{\mathbb{P}}^n$. To prove this we use Zapolsky’s canonical pearl complex for L over ${\mathbb{Z}}$, and twisted versions thereof, where the twisting is determined by connected covers of L. The main tool is the action of the quantum cohomology of ${\mathbb{C}}{\mathbb{P}}^n$ on the resulting Floer homologies.
We prove that every non-degenerate Reeb flow on a closed contact manifold M admitting a strong symplectic filling W with vanishing first Chern class carries at least two geometrically distinct closed orbits provided that the positive equivariant symplectic homology of W satisfies a mild condition. Under further assumptions, we establish the existence of two geometrically distinct closed orbits on any contact finite quotient of M. Several examples of such contact manifolds are provided, like displaceable ones, unit cosphere bundles, prequantisation circle bundles, Brieskorn spheres and toric contact manifolds. We also show that this condition on the equivariant symplectic homology is preserved by boundary connected sums of Liouville domains. As a byproduct of one of our applications, we prove a sort of Lusternik–Fet theorem for Reeb flows on the unit cosphere bundle of not rationally aspherical manifolds satisfying suitable additional assumptions.
We use Hamiltonian Floer theory to recover and generalize a classic rigidity theorem of Ekeland and Lasry. That theorem can be rephrased as an assertion about the existence of multiple closed Reeb orbits for certain tight contact forms on the sphere that are close, in a suitable sense, to the standard contact form. We first generalize this result to Reeb flows of contact forms on prequantization spaces that are suitably close to Boothby–Wang forms. We then establish, under an additional nondegeneracy assumption, the same rigidity phenomenon for Reeb flows on any closed contact manifold. A natural obstruction to obtaining sharp multiplicity results for closed Reeb orbits is the possible existence of fast closed orbits. To complement the existence results established here, we also show that the existence of such fast orbits cannot be precluded by any condition which is invariant under contactomorphisms, even for nearby contact forms.
We study Hamiltonian diffeomorphisms of closed symplectic manifolds with non-contractible periodic orbits. In a variety of settings, we show that the presence of one non-contractible periodic orbit of a Hamiltonian diffeomorphism of a closed toroidally monotone or toroidally negative monotone symplectic manifold implies the existence of infinitely many non-contractible periodic orbits in a specific collection of free homotopy classes. The main new ingredient in the proofs of these results is a filtration of Floer homology by the so-called augmented action. This action is independent of capping and, under favorable conditions, the augmented action filtration for toroidally (negative) monotone manifolds can play the same role as the ordinary action filtration for atoroidal manifolds.
We define an invariant of contact 3-manifolds with convex boundary using Kronheimer and Mrowka’s sutured monopole Floer homology theory ($SHM$). Our invariant can be viewed as a generalization of Kronheimer and Mrowka’s contact invariant for closed contact 3-manifolds and as the monopole Floer analogue of Honda, Kazez, and Matić’s contact invariant in sutured Heegaard Floer homology ($SFH$). In the process of defining our invariant, we construct maps on $SHM$ associated to contact handle attachments, analogous to those defined by Honda, Kazez, and Matić in $SFH$. We use these maps to establish a bypass exact triangle in $SHM$ analogous to Honda’s in $SFH$. This paper also provides the topological basis for the construction of similar gluing maps in sutured instanton Floer homology, which are used in Baldwin and Sivek [Selecta Math. (N.S.), 22(2) (2016), 939–978] to define a contact invariant in the instanton Floer setting.
Building on Seidel and Solomon’s fundamental work [Symplectic cohomology and$q$-intersection numbers, Geom. Funct. Anal. 22 (2012), 443–477], we define the notion of a $\mathfrak{g}$-equivariant Lagrangian brane in an exact symplectic manifold $M$, where $\mathfrak{g}\subset SH^{1}(M)$ is a sub-Lie algebra of the symplectic cohomology of $M$. When $M$ is a (symplectic) mirror to an (algebraic) homogeneous space $G/P$, homological mirror symmetry predicts that there is an embedding of $\mathfrak{g}$ in $SH^{1}(M)$. This allows us to study a mirror theory to classical constructions of Borel, Weil and Bott. We give explicit computations recovering all finite-dimensional irreducible representations of $\mathfrak{sl}_{2}$ as representations on the Floer cohomology of an $\mathfrak{sl}_{2}$-equivariant Lagrangian brane and discuss generalizations to arbitrary finite-dimensional semisimple Lie algebras.
In this article we prove that the Weinstein conjecture holds for contact manifolds $({\rm\Sigma},{\it\xi})$ for which $\text{Cont}_{0}({\rm\Sigma},{\it\xi})$ is non-orderable in the sense of Eliashberg and Polterovich [Partially ordered groups and geometry of contact transformations, Geom. Funct. Anal. 10 (2000), 1448–1476]. More precisely, we establish a link between orderable and hypertight contact manifolds. In addition, we prove for certain contact manifolds a conjecture by Sandon [A Morse estimate for translated points of contactomorphisms of spheres and projective spaces, Geom. Dedicata 165 (2013), 95–110] on the existence of translated points in the non-degenerate case.
The width of a Lagrangian is the largest capacity of a ball that can be symplectically embedded into the ambient manifold such that the ball intersects the Lagrangian exactly along the real part of the ball. Due to Dimitroglou Rizell, finite width is an obstruction to a Lagrangian admitting an exact Lagrangian cap in the sense of Eliashberg–Murphy. In this paper we introduce a new method for bounding the width of a Lagrangian $Q$ by considering the Lagrangian Floer cohomology of an auxiliary Lagrangian $L$ with respect to a Hamiltonian whose chords correspond to geodesic paths in $Q$. This is formalized as a wrapped version of the Floer–Hofer–Wysocki capacity and we establish an associated energy–capacity inequality with the help of a closed–open map. For any orientable Lagrangian $Q$ admitting a metric of non-positive sectional curvature in a Liouville manifold, we show the width of $Q$ is bounded above by four times its displacement energy.
A celebrated theorem in two-dimensional dynamics due to John Franks asserts that every area-preserving homeomorphism of the sphere has either two or infinitely many periodic points. In this work we re-prove Franks’ theorem under the additional assumption that the map is smooth. Our proof uses only tools from symplectic topology and thus differs significantly from previous proofs. A crucial role is played by the results of Ginzburg and Kerman concerning resonance relations for Hamiltonian diffeomorphisms.
We show that there is an hierarchy of intersection rigidity properties of sets in a closed symplectic manifold: some sets cannot be displaced by symplectomorphisms from more sets than the others. We also find new examples of rigidity of intersections involving, in particular, specific fibers of moment maps of Hamiltonian torus actions, monotone Lagrangian submanifolds (following the works of P. Albers and P. Biran-O. Cornea) as well as certain, possibly singular, sets defined in terms of Poisson-commutative subalgebras of smooth functions. In addition, we get some geometric obstructions to semi-simplicity of the quantum homology of symplectic manifolds. The proofs are based on the Floer-theoretical machinery of partial symplectic quasi-states.
The chain complexes underlying Floer homology theories typically carry a real-valued filtration, allowing one to associate to each Floer homology class a spectral number defined as the infimum of the filtration levels of chains representing that class. These spectral numbers have been studied extensively in the case of Hamiltonian Floer homology by Oh, Schwarz and others. We prove that the spectral number associated to any nonzero Floer homology class is always finite, and that the infimum in the definition of the spectral number is always attained. In the Hamiltonian case, this implies that what is known as the ‘nondegenerate spectrality’ axiom holds on all closed symplectic manifolds. Our proofs are entirely algebraic and apply to any Floer-type theory (including Novikov homology) satisfying certain standard formal properties. The key ingredient is a theorem about the existence of best approximations of arbitrary elements of finitely generated free modules over Novikov rings by elements of prescribed submodules with respect to a certain family of non-Archimedean metrics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.