To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define three new take-away games, the Rat game, the Mouse game and the Fat Rat game. Three winning strategies are given for the Rat game and outlined for the Mouse and Fat Rat games. The efficiencies of the strategies are determined. Whereas the winning strategies of nontrivial take-away games are based on irrational numbers, our games are based on rational numbers. Another motivation stems from a problem in combinatorial number theory.
The Rat game is played on 3 piles of tokens by 2 players who play alternately. Positions in the game are denoted throughout in the form (x, y, z), with 0 ≤ x ≤ y ≤ z, and moves in the form (x, y, z)→ (u, v, w), where of course also 0 ≤ u ≤ v ≤ w (see below). The player first unable to move—because the position is (0, 0, 0)—loses; the opponent wins.
This paper addresses the following question for a given graph H: What is the minimum number f(H) such that every graph with average degree at least f(H) contains H as a minor? Due to connections with Hadwiger's conjecture, this question has been studied in depth when H is a complete graph. Kostochka and Thomason independently proved that $f(K_t)=ct\sqrt{\ln t}$. More generally, Myers and Thomason determined f(H) when H has a super-linear number of edges. We focus on the case when H has a linear number of edges. Our main result, which complements the result of Myers and Thomason, states that if H has t vertices and average degree d at least some absolute constant, then $f(H)\leq 3.895\sqrt{\ln d}\,t$. Furthermore, motivated by the case when H has small average degree, we prove that if H has t vertices and q edges, then f(H) ⩽ t + 6.291q (where the coefficient of 1 in the t term is best possible).
We show that partizan games admit canonical forms in misère play. The proof is a synthesis of Conway’s simplest form theorems for normal-play partizan games and misère-play impartial games. As an immediate application, we show that there are precisely 256 games born by day 2, and obtain a bound on the number of games born by day 3.
Disjunctive compounds of short combinatorial games have been studied for many years under a variety of assumptions. A structure theory for normal-play impartial games was established in the 1930s by the Sprague–Grundy theorem [Grundy 1939; Sprague 1935; 1937]. Every such game G is equivalent to a Nim-heap, and the size of this heap, known as the nim value of G, completely describes the behavior of G in disjunctive sums. The Sprague–Grundy theorem underpins virtually all subsequent work on impartial combinatorial games.
Decades later, Conway generalized the Sprague–Grundy theorem in two directions [Berlekamp et al. 2003; Conway 2001]. First, he showed that every partizan game G can be assigned a value that exactly captures its disjunctive behavior, and this value is represented by a unique simplest form for G. Conway’s game values are partizan analogues of nim values, and his simplest form theorem directly generalizes the Sprague–Grundy theorem.
Conway also introduced a misère-play analogue of the Sprague–Grundy theorem. He showed that every impartial game G is represented by a unique misère simplest form [Conway 2001]. Unfortunately, in misère play such simplifications tend to be weak, and as a result the canonical theory of misère games is less useful in practice than its normal-play counterparts.
In each case—normal-play impartial, normal-play partizan, and misère-play impartial—the identification of simplest forms proved to be a key result, at once establishing a structure theory and opening the door to further investigations. In this paper, we prove an analogous simplest form theorem for the misère-play partizan case. The proof integrates techniques drawn from each of Conway’s advances, together with a crucial lemma from [Mesdal and Ottaway 2007].
We present a Monte Carlo algorithm for efficiently finding near optimal moves and bids in the game of Bidding Hex. The algorithm is based on the recent solution of Random-Turn Hex by Peres, Schramm, Sheffield, and Wilson together with Richman’s work connecting random-turn games to bidding games.
Hex is well-known for the simplicity of its rules and the complexity of its play. Nash’s strategy-stealing argument shows that a winning strategy for the first player exists, but finding such a strategy is intractable by current methods on large boards. It is not known, for instance, whether the center hex is a winning first move on an odd size board. The development of artificial intelligence for Hex is a notoriously rich and challenging problem, and has been an active area of research for over thirty years [Davis 1975/76; Nishizawa 1976; Anshelevich 2000; 2002a; 2002b; Cazenave 2001; Rasmussen and Maire 2004], yet the best programs play only at the level of an intermediate human [Melis and Hayward 2003]. Complete analysis of Hex is essentially intractable; the problem of determining which player has a winning strategy from a given board position is PSPACE-complete [Reisch 1981], and the problem of determining whether a given empty hex is dead, or irrelevant to the outcome of the game, is NP-complete [Björnsson et al. 2007]. Some recent research has focused on explicit solutions for small boards [Hayward et al. 2004; Hayward et al. 2005], but it is unclear whether such techniques will eventually extend to the standard 11x11 board.
We give an [n+1/6]-cell handicap strategy for the game of Hex on an n x n board: the first player is guaranteed victory if she is allowed to colour [n+16] cells on her first move. Our strategy exploits a new kind of inferior Hex cell.
Hex was invented independently by Piet Hein [1942] and John Nash [1952]. The game is played by two players, Black and White, on a board with hexagonal cells. The players alternate turns, colouring any single uncoloured cell with their colour. The winner is the player who creates a path of her colour connecting her two opposing board sides. See Figure 1.
Hein and Nash observed that Hex cannot end in a draw [Hein 1942; Nash 1952]: exactly one player has a winning path if all cells are coloured [Beck et al. 1969]. Also, an extra coloured cell is never disadvantageous for the player with that colour [Nash 1952]. For n x n boards, Nash showed the existence of a first-player winning strategy [1952]; however, his proof reveals nothing about the nature of such a strategy. For 8x8 and smaller boards, computer search can find all winning first moves [Hayward et al. 2004; Henderson et al. 2009]. For the 9x9 board, Yang found by human search that moving to the centre cell is a winning first move.
A pair of integer sequences that split ℤ>0 is often—especially in the context of combinatorial game theory—defined recursively by
an = mex {ai , ai: 0 ≤ i ≤ n},bn = an+cn (n≥ 0),
where mex (Minimum EXcludant) of a subset S of nonnegative integers is the smallest nonnegative integer not in S, and c : ℤ≥0→ℤ0. Given x, y ∈ ℤ≥0, a typical problem is to decide whether x = an, y = bn. For general functions c, the best algorithm for this decision problem was until now exponential in the input size Ω(log x +log y). We prove constructively that the problem is actually polynomial for the wide class of approximately linear functions cn. This solves constructively and efficiently the complexity question of a number of previously analyzed take-away games of various authors.
This paper is about the complexity of combinatorial games. Its main contribution is showing constructively that a large class of games whose complexity was hitherto unknown and its best winning strategy was exponential, is actually solvable in polynomial time.
Sprouts is a two-player topological game, invented in 1967 at the University of Cambridge by John Conway and Michael Paterson. The game starts with p spots, and ends in at most 3p -1 moves. The first player who cannot play loses.
The complexity of the p-spot game is very high, so that the best hand-checked proof only shows who the winner is for the 7-spot game, and the best previous computer analysis reached p = 11.
We have written a computer program, using mainly two new ideas. The nimber (also known as Sprague–Grundy number) allows us to compute separately independent subgames; and when the exploration of a part of the game tree seems to be too difficult, we can manually force the program to search elsewhere. Thanks to these improvements, we have settled every case up to p = 32. The outcome of the 33-spot game is still unknown, but the biggest computed value is the 47-spot game! All the computed values support the Sprouts conjecture: the first player has a winning strategy if and only if p is 3, 4 or 5 modulo 6.
We have also used a check algorithm to reduce the number of positions needed to prove which player is the winner. It is now possible to hand-check all the games until p = 11 in a reasonable amount of time.
Sprouts is a two-player pencil-and-paper game invented in 1967 in the University of Cambridge by John Conway and Michael Paterson [Gardner 1967]. The game starts with p spots and players alternately connect the spots by drawing curves between them, adding a new spot on each curve drawn. A new curve cannot cross or touch any existing one, leading necessarily to a planar graph. The first player who cannot play loses.
Let h > w > 0 be two fixed integers. Let H be a random hypergraph whose hyperedges are all of cardinality h. To w-orient a hyperedge, we assign exactly w of its vertices positive signs with respect to the hyperedge, and the rest negative signs. A (w,k)-orientation of H consists of a w-orientation of all hyperedges of H, such that each vertex receives at most k positive signs from its incident hyperedges. When k is large enough, we determine the threshold of the existence of a (w,k)-orientation of a random hypergraph. The (w,k)-orientation of hypergraphs is strongly related to a general version of the off-line load balancing problem. The graph case, when h = 2 and w = 1, was solved recently by Cain, Sanders and Wormald and independently by Fernholz and Ramachandran. This settled a conjecture of Karp and Saks.
In [1], the authors consider a random walk (Zn,1, . . ., Zn,K+1) ∈ ${\mathbb{Z}}$K+1 with the constraint that each coordinate of the walk is at distance one from the following coordinate. A functional central limit theorem for the first coordinate is proved and the limit variance is explicited. In this paper, we study an extended version of this model by conditioning the extremal coordinates to be at some fixed distance at every time. We prove a functional central limit theorem for this random walk. Using combinatorial tools, we give a precise formula of the variance and compare it with that obtained in [1].
Let $\mathcal{F}$ be a family of r-uniform hypergraphs. The chromatic threshold of $\mathcal{F}$ is the infimum of all non-negative reals c such that the subfamily of $\mathcal{F}$ comprising hypergraphs H with minimum degree at least $c \binom{| V(H) |}{r-1}$ has bounded chromatic number. This parameter has a long history for graphs (r = 2), and in this paper we begin its systematic study for hypergraphs.
Łuczak and Thomassé recently proved that the chromatic threshold of the so-called near bipartite graphs is zero, and our main contribution is to generalize this result to r-uniform hypergraphs. For this class of hypergraphs, we also show that the exact Turán number is achieved uniquely by the complete (r + 1)-partite hypergraph with nearly equal part sizes. This is one of very few infinite families of non-degenerate hypergraphs whose Turán number is determined exactly. In an attempt to generalize Thomassen's result that the chromatic threshold of triangle-free graphs is 1/3, we prove bounds for the chromatic threshold of the family of 3-uniform hypergraphs not containing {abc, abd, cde}, the so-called generalized triangle.
In order to prove upper bounds we introduce the concept of fibre bundles, which can be thought of as a hypergraph analogue of directed graphs. This leads to the notion of fibre bundle dimension, a structural property of fibre bundles that is based on the idea of Vapnik–Chervonenkis dimension in hypergraphs. Our lower bounds follow from explicit constructions, many of which use a hypergraph analogue of the Kneser graph. Using methods from extremal set theory, we prove that these Kneser hypergraphs have unbounded chromatic number. This generalizes a result of Szemerédi for graphs and might be of independent interest. Many open problems remain.
Nešetřil and Ossona de Mendez introduced the notion of first-order convergence, which unifies the notions of convergence for sparse and dense graphs. They asked whether, if (Gi)i∈ℕ is a sequence of graphs with M being their first-order limit and v is a vertex of M, then there exists a sequence (vi)i∈ℕ of vertices such that the graphs Gi rooted at vi converge to M rooted at v. We show that this holds for almost all vertices v of M, and we give an example showing that the statement need not hold for all vertices.
The first open case of the Brown–Erdős–Sós conjecture is equivalent to the following: for every c > 0, there is a threshold n0 such that if a quasigroup has order n ⩾ n0, then for every subset S of triples of the form (a, b, ab) with |S| ⩾ cn2, there is a seven-element subset of the quasigroup which spans at least four triples of S. In this paper we prove the conjecture for finite groups.
Number theory and algebra play an increasingly significant role in computing and communications, as evidenced by the striking applications of these subjects to such fields as cryptography and coding theory. This introductory book emphasizes algorithms and applications, such as cryptography and error correcting codes, and is accessible to a broad audience. The presentation alternates between theory and applications in order to motivate and illustrate the mathematics. The mathematical coverage includes the basics of number theory, abstract algebra and discrete probability theory. This edition now includes over 150 new exercises, ranging from the routine to the challenging, that flesh out the material presented in the body of the text, and which further develop the theory and present new applications. The material has also been reorganized to improve clarity of exposition and presentation. Ideal as a textbook for introductory courses in number theory and algebra, especially those geared towards computer science students.
We say that a (di)graph G has a perfect H-packing if there exists a set of vertex-disjoint copies of H which cover all the vertices in G. The seminal Hajnal–Szemerédi theorem characterizes the minimum degree that ensures a graph G contains a perfect Kr-packing. In this paper we prove the following analogue for directed graphs: Suppose that T is a tournament on r vertices and G is a digraph of sufficiently large order n where r divides n. If G has minimum in- and outdegree at least (1−1/r)n then G contains a perfect T-packing.
In the case when T is a cyclic triangle, this result verifies a recent conjecture of Czygrinow, Kierstead and Molla [4] (for large digraphs). Furthermore, in the case when T is transitive we conjecture that it suffices for every vertex in G to have sufficiently large indegree or outdegree. We prove this conjecture for transitive triangles and asymptotically for all r ⩾ 3. Our approach makes use of a result of Keevash and Mycroft [10] concerning almost perfect matchings in hypergraphs as well as the Directed Graph Removal Lemma [1, 6].
In this paper we study in complete generality the family of two-state, deterministic, monotone, local, homogeneous cellular automata in $\mathbb{Z}$d with random initial configurations. Formally, we are given a set $\mathcal{U}$ = {X1,. . . , Xm} of finite subsets of $\mathbb{Z}$d \ {0}, and an initial set A0 ⊂ $\mathbb{Z}$d of ‘infected’ sites, which we take to be random according to the product measure with density p. At time t ∈ $\mathbb{N}$, the set of infected sites At is the union of At-1 and the set of all x ∈ $\mathbb{Z}$d such that x + X ∈ At-1 for some X ∈ $\mathcal{U}$. Our model may alternatively be thought of as bootstrap percolation on $\mathbb{Z}$d with arbitrary update rules, and for this reason we call it $\mathcal{U}$-bootstrap percolation.
In two dimensions, we give a classification of $\mathcal{U}$-bootstrap percolation models into three classes – supercritical, critical and subcritical – and we prove results about the phase transitions of all models belonging to the first two of these classes. More precisely, we show that the critical probability for percolation on ($\mathbb{Z}$/n$\mathbb{Z}$)2 is (log n)−Θ(1) for all models in the critical class, and that it is n−Θ(1) for all models in the supercritical class.
The results in this paper are the first of any kind on bootstrap percolation considered in this level of generality, and in particular they are the first that make no assumptions of symmetry. It is the hope of the authors that this work will initiate a new, unified theory of bootstrap percolation on $\mathbb{Z}$d.
A graph on n vertices is ε-far from a property $\mathcal{P}$ if one has to add or delete from it at least εn2 edges to get a graph satisfying $\mathcal{P}$. A graph property $\mathcal{P}$ is strongly testable if for every fixed ε > 0 it is possible to distinguish, with one-sided error, between graphs satisfying $\mathcal{P}$ and ones that are ε-far from $\mathcal{P}$ by inspecting the induced subgraph on a random subset of at most f(ε) vertices. A property is easily testable if it is strongly testable and the function f is polynomial in 1/ε, otherwise it is hard. We consider the problem of characterizing the easily testable graph properties, which is wide open, and obtain several results in its study. One of our main results shows that testing perfectness is hard. The proof shows that testing perfectness is at least as hard as testing triangle-freeness, which is hard. On the other hand, we show that being a cograph, or equivalently, induced P3-freeness where P3 is a path with 3 edges, is easily testable. This settles one of the two exceptional graphs, the other being C4 (and its complement), left open in the characterization by the first author and Shapira of graphs H for which induced H-freeness is easily testable. Our techniques yield a few additional related results, but the problem of characterizing all easily testable graph properties, or even that of formulating a plausible conjectured characterization, remains open.
Estimating numerically the spectral radius of a random walk on a non-amenable graph is complicated, since the cardinality of balls grows exponentially fast with the radius. We propose an algorithm to get a bound from below for this spectral radius in Cayley graphs with finitely many cone types (including for instance hyperbolic groups). In the genus 2 surface group, it improves by an order of magnitude the previous best bound, due to Bartholdi.
We consider a variant of the game of Cops and Robbers, called Lazy Cops and Robbers, where at most one cop can move in any round. We investigate the analogue of the cop number for this game, which we call the lazy cop number. Lazy Cops and Robbers was recently introduced by Offner and Ojakian, who provided asymptotic upper and lower bounds on the lazy cop number of the hypercube. By coupling the probabilistic method with a potential function argument, we improve on the existing lower bounds for the lazy cop number of hypercubes.
We study the expected value of the length Ln of the minimum spanning tree of the complete graph Kn when each edge e is given an independent uniform [0, 1] edge weight. We sharpen the result of Frieze [6] that limn→∞$\mathbb{E}$(Ln) = ζ(3) and show that