To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There are many textbooks on algorithms focusing on big-O notation and basic design principles. This book offers a unique approach to taking the design and analyses to the level of predictable practical efficiency, discussing core and classic algorithmic problems that arise in the development of big data applications, and presenting elegant solutions of increasing sophistication and efficiency. Solutions are analyzed within the classic RAM model, and the more practically significant external-memory model that allows one to perform I/O-complexity evaluations. Chapters cover various data types, including integers, strings, trees, and graphs, algorithmic tools such as sampling, sorting, data compression, and searching in dictionaries and texts, and lastly, recent developments regarding compressed data structures. Algorithmic solutions are accompanied by detailed pseudocode and many running examples, thus enriching the toolboxes of students, researchers, and professionals interested in effective and efficient processing of big data.
Alweiss, Lovett, Wu, and Zhang introduced $q$-spread hypergraphs in their breakthrough work regarding the sunflower conjecture, and since then $q$-spread hypergraphs have been used to give short proofs of several outstanding problems in probabilistic combinatorics. A variant of $q$-spread hypergraphs was implicitly used by Kahn, Narayanan, and Park to determine the threshold for when a square of a Hamiltonian cycle appears in the random graph $G_{n,p}$. In this paper, we give a common generalization of the original notion of $q$-spread hypergraphs and the variant used by Kahn, Narayanan, and Park.
Which patterns must a two-colouring of $K_n$ contain if each vertex has at least $\varepsilon n$ red and $\varepsilon n$ blue neighbours? We show that when $\varepsilon \gt 1/4$, $K_n$ must contain a complete subgraph on $\Omega (\log n)$ vertices where one of the colours forms a balanced complete bipartite graph.
When $\varepsilon \leq 1/4$, this statement is no longer true, as evidenced by the following colouring $\chi$ of $K_n$. Divide the vertex set into $4$ parts nearly equal in size as $V_1,V_2,V_3, V_4$, and let the blue colour class consist of the edges between $(V_1,V_2)$, $(V_2,V_3)$, $(V_3,V_4)$, and the edges contained inside $V_2$ and inside $V_3$. Surprisingly, we find that this obstruction is unique in the following sense. Any two-colouring of $K_n$ in which each vertex has at least $\varepsilon n$ red and $\varepsilon n$ blue neighbours (with $\varepsilon \gt 0$) contains a vertex set $S$ of order $\Omega _{\varepsilon }(\log n)$ on which one colour class forms a balanced complete bipartite graph, or which has the same colouring as $\chi$.
We study the problem of determining the minimum number $f(n,k,d)$ of affine subspaces of codimension $d$ that are required to cover all points of $\mathbb{F}_2^n\setminus \{\vec{0}\}$ at least $k$ times while covering the origin at most $k - 1$ times. The case $k=1$ is a classic result of Jamison, which was independently obtained by Brouwer and Schrijver for $d = 1$. The value of $f(n,1,1)$ also follows from a well-known theorem of Alon and Füredi about coverings of finite grids in affine spaces over arbitrary fields. Here we determine the value of this function exactly in various ranges of the parameters. In particular, we prove that for $k\geq 2^{n-d-1}$ we have $f(n,k,d)=2^d k-\left\lfloor{\frac{k}{2^{n-d}}}\right\rfloor$, while for $n \gt 2^{2^d k-k-d+1}$ we have $f(n,k,d)=n + 2^d k -d-2$, and obtain asymptotic results between these two ranges. While previous work in this direction has primarily employed the polynomial method, we prove our results through more direct combinatorial and probabilistic arguments, and also exploit a connection to coding theory.
We prove a new sufficient pair degree condition for tight Hamiltonian cycles in $3$-uniform hypergraphs that (asymptotically) improves the best known pair degree condition due to Rödl, Ruciński, and Szemerédi. For graphs, Chvátal characterised all those sequences of integers for which every pointwise larger (or equal) degree sequence guarantees the existence of a Hamiltonian cycle. A step towards Chvátal’s theorem was taken by Pósa, who improved on Dirac’s tight minimum degree condition for Hamiltonian cycles by showing that a certain weaker condition on the degree sequence of a graph already yields a Hamiltonian cycle.
In this work, we take a similar step towards a full characterisation of all pair degree matrices that ensure the existence of tight Hamiltonian cycles in $3$-uniform hypergraphs by proving a $3$-uniform analogue of Pósa’s result. In particular, our result strengthens the asymptotic version of the result by Rödl, Ruciński, and Szemerédi.
We extend the notion of universal graphs to a geometric setting. A geometric graph is universal for a class $\mathcal H$ of planar graphs if it contains an embedding, that is, a crossing-free drawing, of every graph in $\mathcal H$. Our main result is that there exists a geometric graph with $n$ vertices and $O\!\left(n \log n\right)$ edges that is universal for $n$-vertex forests; this generalises a well-known result by Chung and Graham, which states that there exists an (abstract) graph with $n$ vertices and $O\!\left(n \log n\right)$ edges that contains every $n$-vertex forest as a subgraph. The upper bound of $O\!\left(n \log n\right)$ edges cannot be improved, even if more than $n$ vertices are allowed. We also prove that every $n$-vertex convex geometric graph that is universal for $n$-vertex outerplanar graphs has a near-quadratic number of edges, namely $\Omega _h(n^{2-1/h})$, for every positive integer $h$; this almost matches the trivial $O(n^2)$ upper bound given by the $n$-vertex complete convex geometric graph. Finally, we prove that there exists an $n$-vertex convex geometric graph with $n$ vertices and $O\!\left(n \log n\right)$ edges that is universal for $n$-vertex caterpillars.
The rich, multi-faceted and multi-disciplinary field of matching-based market design is an active and important one due to its highly successful applications with economic and sociological impact. Its home is economics, but with intimate connections to algorithm design and operations research. With chapters contributed by over fifty top researchers from all three disciplines, this volume is unique in its breadth and depth, while still being a cohesive and unified picture of the field, suitable for the uninitiated as well as the expert. It explains the dominant ideas from computer science and economics underlying the most important results on market design and introduces the main algorithmic questions and combinatorial structures. Methodologies and applications from both the pre-Internet and post-Internet eras are covered in detail. Key chapters discuss the basic notions of efficiency, fairness and incentives, and the way market design seeks solutions guided by normative criteria borrowed from social choice theory.
A chordal graph is a graph with no induced cycles of length at least $4$. Let $f(n,m)$ be the maximal integer such that every graph with $n$ vertices and $m$ edges has a chordal subgraph with at least $f(n,m)$ edges. In 1985 Erdős and Laskar posed the problem of estimating $f(n,m)$. In the late 1980s, Erdős, Gyárfás, Ordman and Zalcstein determined the value of $f(n,n^2/4+1)$ and made a conjecture on the value of $f(n,n^2/3+1)$. In this paper we prove this conjecture and answer the question of Erdős and Laskar, determining $f(n,m)$ asymptotically for all $m$ and exactly for $m \leq n^2/3+1$.
For a fixed infinite graph $H$, we study the largest density of a monochromatic subgraph isomorphic to $H$ that can be found in every two-colouring of the edges of $K_{\mathbb{N}}$. This is called the Ramsey upper density of $H$ and was introduced by Erdős and Galvin in a restricted setting, and by DeBiasio and McKenney in general. Recently [4], the Ramsey upper density of the infinite path was determined. Here, we find the value of this density for all locally finite graphs $H$ up to a factor of 2, answering a question of DeBiasio and McKenney. We also find the exact density for a wide class of bipartite graphs, including all locally finite forests. Our approach relates this problem to the solution of an optimisation problem for continuous functions. We show that, under certain conditions, the density depends only on the chromatic number of $H$, the number of components of $H$ and the expansion ratio $|N(I)|/|I|$ of the independent sets of $H$.
The notion of cross-intersecting set pair system of size $m$, $ (\{A_i\}_{i=1}^m, \{B_i\}_{i=1}^m )$ with $A_i\cap B_i=\emptyset$ and $A_i\cap B_j\ne \emptyset$, was introduced by Bollobás and it became an important tool of extremal combinatorics. His classical result states that $m\le\binom{a+b}{a}$ if $|A_i|\le a$ and $|B_i|\le b$ for each $i$. Our central problem is to see how this bound changes with the additional condition $|A_i\cap B_j|=1$ for $i\ne j$. Such a system is called $1$-cross-intersecting. We show that these systems are related to perfect graphs, clique partitions of graphs, and finite geometries. We prove that their maximum size is
at least $5^{n/2}$ for $n$ even, $a=b=n$,
equal to $\bigl (\lfloor \frac{n}{2}\rfloor +1\bigr )\bigl (\lceil \frac{n}{2}\rceil +1\bigr )$ if $a=2$ and $b=n\ge 4$,
at most $|\cup _{i=1}^m A_i|$,
asymptotically $n^2$ if $\{A_i\}$ is a linear hypergraph ($|A_i\cap A_j|\le 1$ for $i\ne j$),
asymptotically ${1\over 2}n^2$ if $\{A_i\}$ and $\{B_i\}$ are both linear hypergraphs.
Given a graph $G$ and an integer $\ell \ge 2$, we denote by $\alpha _{\ell }(G)$ the maximum size of a $K_{\ell }$-free subset of vertices in $V(G)$. A recent question of Nenadov and Pehova asks for determining the best possible minimum degree conditions forcing clique-factors in $n$-vertex graphs $G$ with $\alpha _{\ell }(G) = o(n)$, which can be seen as a Ramsey–Turán variant of the celebrated Hajnal–Szemerédi theorem. In this paper we find the asymptotical sharp minimum degree threshold for $K_r$-factors in $n$-vertex graphs $G$ with $\alpha _\ell (G)=n^{1-o(1)}$ for all $r\ge \ell \ge 2$.
A random two-cell embedding of a given graph $G$ is obtained by choosing a random local rotation around every vertex. We analyse the expected number of faces of such an embedding, which is equivalent to studying its average genus. In 1991, Stahl [5] proved that the expected number of faces in a random embedding of an arbitrary graph of order $n$ is at most $n\log (n)$. While there are many families of graphs whose expected number of faces is $\Theta (n)$, none are known where the expected number would be super-linear. This led the authors of [1] to conjecture that there is a linear upper bound. In this note we confirm their conjecture by proving that for any $n$-vertex multigraph, the expected number of faces in a random two-cell embedding is at most $2n\log (2\mu )$, where $\mu$ is the maximum edge-multiplicity. This bound is best possible up to a constant factor.
For a $k$-uniform hypergraph $\mathcal{H}$ on vertex set $\{1, \ldots, n\}$ we associate a particular signed incidence matrix $M(\mathcal{H})$ over the integers. For $\mathcal{H} \sim \mathcal{H}_k(n, p)$ an Erdős–Rényi random $k$-uniform hypergraph, ${\mathrm{coker}}(M(\mathcal{H}))$ is then a model for random abelian groups. Motivated by conjectures from the study of random simplicial complexes we show that for $p = \omega (1/n^{k - 1})$, ${\mathrm{coker}}(M(\mathcal{H}))$ is torsion-free.