To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Explains the notion of discrepancy. Describesconnections to randomized communicationcomplexity. Proves lower bounds using convexityand concentration of measure.
We give an example of a long range Bernoulli percolation process on a group non-quasi-isometric with ℤ, in which clusters are almost surely finite for all values of the parameter. This random graph admits diverse equivalent definitions, and we study their ramifications. We also study its expected size and point out certain phase transitions.
In this paper we develop an in-depth analysis of non-reversible Markov chains on denumerable state space from a similarity orbit perspective. In particular, we study the class of Markov chains whose transition kernel is in the similarity orbit of a normal transition kernel, such as that of birth–death chains or reversible Markov chains. We start by identifying a set of sufficient conditions for a Markov chain to belong to the similarity orbit of a birth–death chain. As by-products, we obtain a spectral representation in terms of non-self-adjoint resolutions of identity in the sense of Dunford [21] and offer a detailed analysis on the convergence rate, separation cutoff and L2-cutoff of this class of non-reversible Markov chains. We also look into the problem of estimating the integral functionals from discrete observations for this class. In the last part of this paper we investigate a particular similarity orbit of reversible Markov kernels, which we call the pure birth orbit, and analyse various possibly non-reversible variants of classical birth–death processes in this orbit.
The theta graph ${\Theta _{\ell ,t}}$ consists of two vertices joined by t vertex-disjoint paths, each of length $\ell $. For fixed odd $\ell $ and large t, we show that the largest graph not containing ${\Theta _{\ell ,t}}$ has at most ${c_\ell }{t^{1 - 1/\ell }}{n^{1 + 1/\ell }}$ edges and that this is tight apart from the value of ${c_\ell }$.
Let c denote the largest constant such that every C6-free graph G contains a bipartite and C4-free subgraph having a fraction c of edges of G. Győri, Kensell and Tompkins showed that 3/8 ⩽ c ⩽ 2/5. We prove that c = 38. More generally, we show that for any ε > 0, and any integer k ⩾ 2, there is a C2k-free graph $G'$ which does not contain a bipartite subgraph of girth greater than 2k with more than a fraction
One of our proofs uses the following statement, which we prove using probabilistic ideas, generalizing a theorem of Erdős. For any ε > 0, and any integers a, b, k ⩾ 2, there exists an a-uniform hypergraph H of girth greater than k which does not contain any b-colourable subhypergraph with more than a fraction
of the hyperedges of H. We also prove further generalizations of this theorem.
In addition, we give a new and very short proof of a result of Kühn and Osthus, which states that every bipartite C2k-free graph G contains a C4-free subgraph with at least a fraction 1/(k−1) of the edges of G. We also answer a question of Kühn and Osthus about C2k-free graphs obtained by pasting together C2l’s (with k >l ⩾ 3).
We show that a dense subset of a sufficiently large group multiplication table contains either a large part of the addition table of the integers modulo some k, or the entire multiplication table of a certain large abelian group, as a subgrid. As a consequence, we show that triples systems coming from a finite group contain configurations with t triples spanning $ O(\sqrt t )$ vertices, which is the best possible up to the implied constant. We confirm that for all t we can find a collection of t triples spanning at most t + 3 vertices, resolving the Brown–Erdős–Sós conjecture in this context. The proof applies well-known arithmetic results including the multidimensional versions of Szemerédi’s theorem and the density Hales–Jewett theorem.
This result was discovered simultaneously and independently by Nenadov, Sudakov and Tyomkyn [5], and a weaker result avoiding the arithmetic machinery was obtained independently by Wong [11].
Communication complexity is the mathematical study of scenarios where several parties need to communicate to achieve a common goal, a situation that naturally appears during computation. This introduction presents the most recent developments in an accessible form, providing the language to unify several disjoint research subareas. Written as a guide for a graduate course on communication complexity, it will interest a broad audience in computer science, from advanced undergraduates to researchers in areas ranging from theory to algorithm design to distributed computing. The first part presents basic theory in a clear and illustrative way, offering beginners an entry into the field. The second part describes applications including circuit complexity, proof complexity, streaming algorithms, extension complexity of polytopes, and distributed computing. Proofs throughout the text use ideas from a wide range of mathematics, including geometry, algebra, and probability. Each chapter contains numerous examples, figures, and exercises to aid understanding.
We consider the behaviour of minimax recursions defined on random trees. Such recursions give the value of a general class of two-player combinatorial games. We examine in particular the case where the tree is given by a Galton–Watson branching process, truncated at some depth 2n, and the terminal values of the level 2n nodes are drawn independently from some common distribution. The case of a regular tree was previously considered by Pearl, who showed that as n → ∞ the value of the game converges to a constant, and by Ali Khan, Devroye and Neininger, who obtained a distributional limit under a suitable rescaling.
For a general offspring distribution, there is a surprisingly rich variety of behaviour: the (unrescaled) value of the game may converge to a constant, or to a discrete limit with several atoms, or to a continuous distribution. We also give distributional limits under suitable rescalings in various cases.
We also address questions of endogeny. Suppose the game is played on a tree with many levels, so that the terminal values are far from the root. To be confident of playing a good first move, do we need to see the whole tree and its terminal values, or can we play close to optimally by inspecting just the first few levels of the tree? The answers again depend in an interesting way on the offspring distribution.
Random constraint satisfaction problems play an important role in computer science and combinatorics. For example, they provide challenging benchmark examples for algorithms, and they have been harnessed in probabilistic constructions of combinatorial structures with peculiar features. In an important contribution (Krzakala et al. 2007, Proc. Nat. Acad. Sci.), physicists made several predictions on the precise location and nature of phase transitions in random constraint satisfaction problems. Specifically, they predicted that their satisfiability thresholds are quite generally preceded by several other thresholds that have a substantial impact both combinatorially and computationally. These include the condensation phase transition, where long-range correlations between variables emerge, and the reconstruction threshold. In this paper we prove these physics predictions for a broad class of random constraint satisfaction problems. Additionally, we obtain contiguity results that have implications for Bayesian inference tasks, a subject that has received a great deal of interest recently (e.g. Banks et al. 2016, Proc. 29th COLT).