To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the roots of the chromatic polynomials of planar graphs are dense in the interval between 32/27 and 4, except possibly in a small interval around τ + 2 where τ is the golden ratio. This interval arises due to a classical result of Tutte, which states that the chromatic polynomial of every planar graph takes a positive value at τ + 2. Our results lead us to conjecture that τ + 2 is the only such number less than 4.
A sunflower is a collection of distinct sets such that the intersection of any two of them is the same as the common intersection C of all of them, and |C| is smaller than each of the sets. A longstanding conjecture due to Erdős and Szemerédi (solved recently in [7, 9]; see also [22]) was that the maximum size of a family of subsets of [n] that contains no sunflower of fixed size k > 2 is exponentially smaller than 2n as n → ∞. We consider the problems of determining the maximum sum and product of k families of subsets of [n] that contain no sunflower of size k with one set from each family. For the sum, we prove that the maximum is
$$(k-1)2^n+1+\sum_{s=0}^{k-2}\binom{n}{s}$$
for all n ⩾ k ⩾ 3, and for the k = 3 case of the product, we prove that the maximum is
$$\biggl(\ffrac{1}{8}+o(1)\biggr)2^{3n}.$$
We conjecture that for all fixed k ⩾ 3, the maximum product is (1/8+o(1))2kn.
We follow the example of Tutte in his construction of the dichromate of a graph (i.e. the Tutte polynomial) as a unification of the chromatic polynomial and the flow polynomial in order to construct a new polynomial invariant of maps (graphs embedded in orientable surfaces). We call this the surface Tutte polynomial. The surface Tutte polynomial of a map contains the Las Vergnas polynomial, the Bollobás–Riordan polynomial and the Krushkal polynomial as specializations. By construction, the surface Tutte polynomial includes among its evaluations the number of local tensions and local flows taking values in any given finite group. Other evaluations include the number of quasi-forests.
We study the number of random permutations needed to invariably generate the symmetric group Sn when the distribution of cycle counts has the strong α-logarithmic property. The canonical example is the Ewens sampling formula, for which the special case α = 1 corresponds to uniformly random permutations.
For strong α-logarithmic measures and almost every α, we show that precisely ⌈(1−αlog2)−1⌉ permutations are needed to invariably generate Sn with asymptotically positive probability. A corollary is that for many other probability measures on Sn no fixed number of permutations will invariably generate Sn with positive probability. Along the way we generalize classic theorems of Erdős, Tehran, Pyber, Łuczak and Bovey to permutations obtained from the Ewens sampling formula.
In this paper we consider j-tuple-connected components in random k-uniform hypergraphs (the j-tuple-connectedness relation can be defined by letting two j-sets be connected if they lie in a common edge and considering the transitive closure; the case j = 1 corresponds to the common notion of vertex-connectedness). We show that the existence of a j-tuple-connected component containing Θ(nj) j-sets undergoes a phase transition and show that the threshold occurs at edge probability
$$\frac{(k-j)!}{\binom{k}{j}-1}n^{j-k}.$$
Our proof extends the recent short proof for the graph case by Krivelevich and Sudakov, which makes use of a depth-first search to reveal the edges of a random graph.
Our main original contribution is a bounded degree lemma, which controls the structure of the component grown in the search process.
NP-complete problems should be hard on some instances but those may be extremely rare. On generic instances many such problems, especially related to random graphs, have been proved to be easy. We show the intractability of random instances of a graph colouring problem: this graph problem is hard on average unless all NP problems under all samplable (i.e. generatable in polynomial time) distributions are easy. Worst case reductions use special gadgets and typically map instances into a negligible fraction of possible outputs. Ours must output nearly random graphs and avoid any super-polynomial distortion of probabilities. This poses significant technical difficulties.
It follows from known results that every regular tripartite hypergraph of positive degree, with n vertices in each class, has matching number at least n/2. This bound is best possible, and the extremal configuration is unique. Here we prove a stability version of this statement, establishing that every regular tripartite hypergraph with matching number at most (1 + ϵ)n/2 is close in structure to the extremal configuration, where ‘closeness’ is measured by an explicit function of ϵ.