To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Dense networks with weighted connections often exhibit a community-like structure, where although most nodes are connected to each other, different patterns of edge weights may emerge depending on each node’s community membership. We propose a new framework for generating and estimating dense weighted networks with potentially different connectivity patterns across different communities. The proposed model relies on a particular class of functions which map individual node characteristics to the edges connecting those nodes, allowing for flexibility while requiring a small number of parameters relative to the number of edges. By leveraging the estimation techniques, we also develop a bootstrap methodology for generating new networks on the same set of vertices, which may be useful in circumstances where multiple data sets cannot be collected. Performance of these methods is analyzed in theory, simulations, and real data.
While we know that adolescents tend to befriend peers who share their race and gender, it is unclear whether patterns of homophily vary according to the strength, intimacy, or connectedness of these relationships. By applying valued exponential random graph models to a sample of 153 adolescent friendship networks, I test whether tendencies towards same-race and same-gender friendships differ for strong versus weak relational ties. In nondiverse, primarily white networks, weak ties are more likely to connect same-race peers, while racial homophily is not associated with the formation of stronger friendships. As racial diversity increases, however, strong ties become more likely to connect same-race peers, while weaker bonds are less apt to be defined by racial homophily. Gender homophily defines the patterns of all friendship ties, but these tendencies are more pronounced for weaker connections. My results highlight the empirical value of considering tie strength when examining social processes in adolescent networks.
In order to make the designed ankle robotic system simpler, practical, and clinically oriented, we developed a novel $\underline{R}-2\underline{U}PS/RR$ ankle rehabilitation robot with a variety of training functions covering all the required ranges of motion of the ankle joint complex (AJC), where $U$, $P$, $S$, and $R$ denote universal, prismatic, spherical, and revolute joints, respectively, and the underlined letter denotes the actuated joint. The robot was designed with three degrees of freedom (DOFs), with a series $R$ mechanism and a $2\underline{U}PS/RR$ parallel mechanism. The main advantage is that the height of the robot is very low, which is convenient for clinical use by patients. At first, the mechanism design and inverse solution of positions were introduced in detail. Then, the patient-passive exercise based on the predefined trajectory tracking and patient-active exercise based on the spring model were developed to satisfy different rehabilitation stages. Finally, experiments with healthy subjects were conducted to verify the effectiveness of the developed patient-passive and patient-active exercises of the developed ankle rehabilitation robot, with results compared with the existing ankle robotic system showing good trajectory tracking performance and interactive performance.
Sexual propagation of Agave plants is an incipient cultivation method, these plants withstand drought and adverse growing conditions; therefore, research on Agave’s diversity, seed processing, and storage could support its cultivation on marginal lands. The aim of this work was to evaluate seed morphology, germination, and seedling genetic diversity of six seed origins (species × provenance) of Agave plants collected in five provenances from Mexico. Seed longevity was evaluated in two seed origins after a 10-year storage period. Seed morphology and seedling genetic variation results demonstrated intra- and interspecific variation within Agave salmiana and with the other seed origins, respectively. After a 10-year storage period seed germination of two A. salmiana seed origins remained relatively stable, storage conditions, and seed variables of this work can serve as reference parameters for future analyses. To the best authors’ knowledge, this is the first report of Agave’s seed longevity evaluation after a 10-year storage period.
Researchers have found that although external attacks, exogenous shocks, and node knockouts can disrupt networked systems, they rarely lead to the system’s collapse. Although these processes are widely understood, most studies of how exogenous shocks affect networks rely on simulated or observational data. Thus, little is known about how groups of real individuals respond to external attacks. In this article, we employ an experimental design in which exogenous shocks, in the form of the unexpected removal of a teammate, are imposed on small teams of people who know each other. This allows us to causally identify the removed individual’s contribution to the team structure, the effect that an individual had on those they were connected, and the effect of the node knockout on the team. At the team level, we find that node knockouts decrease overall internal team communication. At the individual level, we find that node knockouts cause the remaining influential players to become more influential, while the remaining peripheral players become more isolated within their team. In addition, we also find that node knockouts may have a nominal influence on team performance. These findings shed light on how teams respond and adapt to node knockouts.
The bootComb R package allows researchers to derive confidence intervals with correct target coverage for arbitrary combinations of arbitrary numbers of independently estimated parameters. Previous versions (<1.1.0) of bootComb used independent bootstrap sampling and required that the parameters themselves are independent—an unrealistic assumption in some real-world applications.
Findings
Using Gaussian copulas to define the dependence between parameters, the bootComb package has been extended to allow for dependent parameters.
Implications
The updated bootComb package can now handle cases of dependent parameters, with users specifying a correlation matrix defining the dependence structure. While in practice it may be difficult to know the exact dependence structure between parameters, bootComb allows running sensitivity analyses to assess the impact of parameter dependence on the resulting confidence interval for the combined parameter.
Deep neural networks as an end-to-end approach lack robustness from an application point of view, as it is very difficult to fix an obvious problem without retraining the model, for example, when a model consistently predicts positive when seeing the word “terrible.” Meanwhile, it is less stressed that the commonly used attention mechanism is likely to “over-fit” by being overly sparse, so that some key positions in the input sequence could be overlooked by the network. To address these problems, we proposed a lexicon-enhanced attention LSTM model in 2019, named ATLX. In this paper, we describe extended experiments and analysis of the ATLX model. And, we also try to further improve the aspect-based sentiment analysis system by combining a vector-based sentiment domain adaptation method.
Traditional belief revision usually considers generic logic formulas, whilst in practical applications some formulas might even be inappropriate for beliefs. For instance, the formula $p \wedge q$ is syntactically consistent and is also an acceptable belief when there are no restrictions, but it might become unacceptable under restrictions in some context. If we assume that p represents ‘manufacturing product A’ and q represents ‘manufacturing product B’, an example of such a context would be the knowledge that there are not enough resources to manufacture them both and, hence, $p \wedge q$ would not be an acceptable belief. In this article, we propose a generic framework for belief revision under restrictions. We consider restrictions of either fixed or dynamic nature, and devise several postulates to characterize the behaviour of changing beliefs when new evidence emerges or the restriction changes. Moreover, we show that there is a representation theorem for each type of restriction. Finally, we discuss belief revision of qualitative spatio-temporal information under restrictions as an application of this new framework.
We prove a strengthened version of Shavrukov’s result on the non-isomorphism of diagonalizable algebras of two $\Sigma _1$-sound theories, based on the improvements previously found by Adamsson. We then obtain several corollaries to the strengthened result by applying it to various pairs of theories and obtain new non-isomorphism examples. In particular, we show that there are no surjective homomorphisms from the algebra $(\mathfrak {L}_T, \Box _T\Box _T)$ onto the algebra $(\mathfrak {L}_T, \Box _T)$. The case of bimodal diagonalizable algebras is also considered. We give several examples of pairs of theories with isomorphic diagonalizable algebras but non-isomorphic bimodal diagonalizable algebras.
This paper proposes a tracking controller for the formation construction of multiple autonomous surface vessels (ASVs) in the presence of model uncertainties and external disturbances with output constraints. To design a formation control system, the leader-following strategy is adopted for each ASV. A symmetric barrier Lyapunov function (BLF), which advances to infinity when its arguments reach a finite limit, is applied to prevent the state variables from violating constraints. An adaptive-neural technique is employed to compensate uncertain parameters and unmodeled dynamics. To overcome the explosion of differentiation term problem, a first-order filter is proposed to realize the derivative of virtual variables in the dynamic surface control (DSC). To estimate the leader velocity in finite time, a high-gain observer is effectively employed. This approach is adopted to reveal all signals of the closed-loop system which are bounded, and the formation tracking errors are semi-globally finite-time uniformly bounded. The computer simulation results demonstrate the efficacy of this newly proposed formation controller for the autonomous surface vessels.
Automatic sequences are sequences over a finite alphabet generated by a finite-state machine. This book presents a novel viewpoint on automatic sequences, and more generally on combinatorics on words, by introducing a decision method through which many new results in combinatorics and number theory can be automatically proved or disproved with little or no human intervention. This approach to proving theorems is extremely powerful, allowing long and error-prone case-based arguments to be replaced by simple computations. Readers will learn how to phrase their desired results in first-order logic, using free software to automate the computation process. Results that normally require multipage proofs can emerge in milliseconds, allowing users to engage with mathematical questions that would otherwise be difficult to solve. With more than 150 exercises included, this text is an ideal resource for researchers, graduate students, and advanced undergraduates studying combinatorics, sequences, and number theory.
In this paper, we consider some dividend problems in the perturbed compound Poisson model under a constant barrier dividend strategy. We approximate the expected present value of dividend payments before ruin and the expected discounted penalty function based on the COS method, and construct some nonparametric estimators by using a random sample on claim number and individual claim sizes. Under a large sample size setting, we perform an error analysis of the estimators. We also provide some simulation results to verify the effectiveness of this estimation method when the sample size is finite.
In this paper, an overall structure with the asymmetric constrained controller is constructed for human–robot interaction in uncertain environments. The control structure consists of two decoupling loops. In the outer loop, a discrete output feedback adaptive dynamics programing (OPFB ADP) algorithm is proposed to deal with the problems of unknown environment dynamic and unobservable environment position. Besides, a discount factor is added to the discrete OPFB ADP algorithm to improve the convergence speed. In the inner loop, a constrained controller is developed on the basis of asymmetric barrier Lyapunov function, and a neural network method is applied to approximate the dynamic characteristics of the uncertain system model. By utilizing this controller, the robot can track the prescribed trajectory precisely within a security boundary. Simulation and experimental results demonstrate the effectiveness of the proposed controller.
This new book on mathematical logic by Jeremy Avigad gives a thorough introduction to the fundamental results and methods of the subject from the syntactic point of view, emphasizing logic as the study of formal languages and systems and their proper use. Topics include proof theory, model theory, the theory of computability, and axiomatic foundations, with special emphasis given to aspects of mathematical logic that are fundamental to computer science, including deductive systems, constructive logic, the simply typed lambda calculus, and type-theoretic foundations. Clear and engaging, with plentiful examples and exercises, it is an excellent introduction to the subject for graduate students and advanced undergraduates who are interested in logic in mathematics, computer science, and philosophy, and an invaluable reference for any practicing logician's bookshelf.
Discover a fresh take on classical screw theory and understand the geometry embedded within robots and mechanisms with this essential text. The book begins with a geometrical study of points, lines, and planes and slowly takes the reader toward a mastery of screw theory with some cutting-edge results, all while using only basic linear algebra and ordinary vectors. It features a discussion of the geometry of parallel and serial robot manipulators, in addition to the reciprocity of screws and a singularity study. All 41 essential screw systems are unveiled, establishing the possible freedom twists and constraint wrenches for a kinematic joint. Familiarizing the reader with screw geometry in order to study the statics and kinematics of robots and mechanisms, this is a perfect resource for engineers and graduate students.
This chapter kicks off with an example for a simple program in Python. Through this example, we will delve right away into the syntax of this popular programming language. There will be quite a few technical details in this example, which are probably new to anyone with no prior Python experience. The rest of the chapter will then walk the reader briefly yet methodologically through the basic Pythonic syntax. By the end of this chapter, you will be able to write simple programs in Python to solve various problems of a computational nature.