To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we propose a polynomial-time deterministic algorithm for approximately counting the k-colourings of the random graph G(n, d/n), for constant d>0. In particular, our algorithm computes in polynomial time a $(1\pm n^{-\Omega(1)})$-approximation of the so-called ‘free energy’ of the k-colourings of G(n, d/n), for $k\geq (1+\varepsilon) d$ with probability $1-o(1)$ over the graph instances.
Our algorithm uses spatial correlation decay to compute numerically estimates of marginals of the Gibbs distribution. Spatial correlation decay has been used in different counting schemes for deterministic counting. So far algorithms have exploited a certain kind of set-to-point correlation decay, e.g. the so-called Gibbs uniqueness. Here we deviate from this setting and exploit a point-to-point correlation decay. The spatial mixing requirement is that for a pair of vertices the correlation between their corresponding configurations becomes weaker with their distance.
Furthermore, our approach generalizes in that it allows us to compute the Gibbs marginals for small sets of nearby vertices. Also, we establish a connection between the fluctuations of the number of colourings of G(n, d/n) and the fluctuations of the number of short cycles and edges in the graph.
This paper addresses the tracking problem for uncertain nonlinear sandwich systems that consist of two nonlinear subsystems and saturation nonlinearity, which is sandwiched between the subsystems. The considered sandwich system is also subject to a nonsymmetric input saturation constraint. Due to the nonsmooth characteristics of sandwiched saturation nonlinearity and also the input saturation function, the design procedure deals with hard challenges. To overcome these difficulties, a recursive approach is suggested that consists of two phases. For the implementation of the proposed approach, a tracking problem is solved in each phase. In the first phase, the second subsystem with sandwiched saturation nonlinearity is considered and the output tracking problem of the desired time-varying reference signal is solved using backstepping method. The outcome of the first phase is the desired reference signal that should be tracked by the first subsystem in the next phase. In the second phase, the robust control input is designed for the first subsystem by employing adaptive sliding mode technique such that, despite the nonsymmetric input saturation constraint, model uncertainty and external disturbances, the output of the first subsystem follows the desired signal that is obtained in the previous phase. The simulation results for a mechanical sandwich system are illustrated to verify the effectiveness of the proposed control method.
A Coordination Blockchain is a blockchain that coordinates activities of multiple private blockchains. This paper discusses the pros and cons of using Ethereum MainNet, the public Ethereum blockchain, as a Coordination Blockchain. The requirements Ethereum MainNet needs to fulfil to perform this role are analyzed within the context of Ethereum Private Sidechains, a private blockchain technology which allows many blockchains to be operated in parallel, and allows atomic crosschain transactions to execute across blockchains. We found that Ethereum MainNet is best suited to storing long-term static data that need to be widely available, such as the Ethereum Registration Authority information. However, due to Ethereum MainNet’s probabilistic finality, it is not well suited to information that needs to be available and acted upon immediately, such as the Sidechain Public Keys and Atomic Crosschain Transaction state information that need to be accessible prior to the first atomic crosschain transaction being issued on a sidechain. Although this paper examined the use of Ethereum MainNet as a Coordination Blockchain within reference to Ethereum Private Sidechains, the discussions and observations of the typical tasks a Coordination Blockchain may be expected to perform are applicable more widely to any multi-blockchain system.
The current contribution presents a new sinkage sensor specified for an unmanned ground vehicle to find the exact sinkage zone of a wheel interacting with the soil particles. This sensor will be wrapped around the wheel, and consequently, contact analog outputs will be used in soil deposition and bulldozing effect prediction. Furthermore, the new sensor will be used for a novel soil flow calculation estimating the total mass variation of the control volume of soil particles beneath the wheel. Accordingly, the spiral model simulating the displacement of the particle is implemented to calculate the soil deposition.
In brachytherapy, the manual implantation of seeds is not accurate leading to side effects and limiting the use of new procedures. Robotics solutions have to be fully suitable for medical applications especially considering the operating room. This paper investigates a delta robot solution for improving the accuracy of the prostate brachytherapy procedure by proposing a compact and lightweight robot. In addition, the design was thought as a comanipulated robot for a better acceptability and human–machine interaction. The robot kinematics and singularities were determined and the theoretical capability in term of resolution and force feedback was evaluated. A prototype was built in order to experimentally measure the capability of this first prototype.
The optimum selection of a structure for a given application is a capital phase in typological synthesis of parallel robots. To help in this selection, this paper presents a performance evaluation of four translational parallel robots: Delta, 3-UPU, Romdhane-Affi-Fayet, and Tri-pyramid (TP). The problem is set as a multiobjective optimization using genetic algorithm methods, which uses kinematic criteria, that is, global dexterity and compactness, to ensure a prescribed workspace. The results are presented as Pareto fronts, which are used to compare the performances of the aforementioned structures. The obtained results show that the TP robot has the best kinematic performance, whereas the 3-UPU robot is the most compact for a given prescribed workspace.
An autonomous motion planning framework is proposed, consisting of path planning and trajectory generation. Primarily, a spacious preferred probabilistic roadmap algorithm is utilized to search a safe and short path, considering kinematics and threats from obstacles. Subsequently, a minimum-snap and position-clearance polynomial trajectory problem is transformed into an unconstrained quadratic programming and solved in a two-step optimization. Finally, comparisons with other methods based on statistical simulations are implemented. The results show that the proposed method achieves computational efficiency and a safe trajectory.
Growing in a saline environment causes changes in important physiological processes that are directly related to plant growth and development. In this study we evaluated the effect of salinity on transpiration of sorghum plants in semi-arid conditions and found that the highest rates of transpiration were observed in the hottest hours of the day, between 10 a.m. and 3 p.m., with plants subjected to the saline environment having their transpiration reduced by up to 70% when compared to the non-saline environment. This behavior can be reflected in reductions in plant growth and development due to reduced water absorption by the roots, consequently causing an imbalance of nutrients in the plant due to low absorption rate and competition between nutrients and salts in the preferred routes of absorption in the roots.
In this discussion paper, we outline the motivations and the main principles of the Trusted Smart Statistics (TSS) concept that is under development in the European Statistical System. TSS represents the evolution of official statistics in response to the challenges posed by the new datafied society. Taking stock from the availability of new digital data sources, new technologies, and new behaviors, statistical offices are called nowadays to rethink the way they operate in order to reassert their role in modern democratic society. The issue at stake is considerably broader and deeper than merely adapting existing processes to embrace so-called Big Data. In several aspects, such evolution entails a fundamental paradigm shift with respect to the legacy model of official statistics production based on traditional data sources, for example, in the relation between data and computation, between data collection and analysis, between methodological development and statistical production, and of course in the roles of the various stakeholders and their mutual relationships. Such complex evolution must be guided by a comprehensive system-level view based on clearly spelled design principles. In this paper, we aim at providing a general account of the TSS concept reflecting the current state of the discussion within the European Statistical System.
This paper introduces a set of principles that articulate a shared vision for increasing access to data in the engineering and related sectors. The principles are intended to help guide progress toward a data ecosystem that provides sustainable access to data, in ways that will help a variety of stakeholders in maximizing its value while mitigating potential harms. In addition to being a manifesto for change, the principles can also be viewed as a means for understanding the alignment, overlaps and gaps between a range of existing research programs, policy initiatives, and related work on data governance and sharing. After providing background on the growing data economy and relevant recent policy initiatives in the United Kingdom and European Union, we then introduce the nine key principles of the manifesto. For each principle, we provide some additional rationale and links to related work. We invite feedback on the manifesto and endorsements from a range of stakeholders.
Conveyor belt wear is an important consideration in the bulk materials handling industry. We define four belt wear rate metrics and develop a model to predict wear rates of new conveyor configurations using an industry dataset that includes ultrasonic thickness measurements, conveyor attributes, and conveyor throughput. All variables are expected to contribute in some way to explaining wear rate and are included in modeling. One specific metric, the maximum throughput-based wear rate, is selected as the prediction target, and cross-validation is used to evaluate the out-of-sample performance of random forest and linear regression algorithms. The random forest approach achieves a lower error of 0.152 mm/megatons (standard deviation [SD] = 0.0648). Permutation importance and partial dependence plots are computed to provide insights into the relationship between conveyor parameters and wear rate. This work demonstrates how belt wear rate can be quantified from imprecise thickness testing methods and provides a transparent modeling framework applicable to other supervised learning problems in risk and reliability.
The objective of this work is to construct a robot that is based on 3D printing to meet the low-cost and light structures. The Computer-aided-design model is used with LabVIEW to simulate the given trajectory. Users of the simulation of such methodology can preview the simulated motion and perceive and resolve discrepancies between the planned and simulated paths prior to execution of a task. The advantages of this study are the lack of need to mount extra sensors on realistic robot to measure joint space coordinates, simplifying the hardware. These outcomes can also be used in an undergraduate robotics course.