To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Buoyancy-driven exchange flows in geophysical contexts often exhibit significant interfacial turbulence leading to a partially mixed intermediate layer between two counterflowing layers. In this paper we perform a three-layer hydraulic analysis of such flows, highlighting the dynamical importance of the middle mixed layer. Our analysis is based on the viscous, shallow water, Boussinesq equations and includes the effects of mixing as a non-hydrostatic pressure forcing. We demonstrate the superior predictive accuracy of three-layer hydraulics over the more classical two-layer approach by applying it to direct numerical simulation data in stratified inclined duct exchange flows where turbulence is controlled by a modest slope of the duct. The three-layer model predicts a region bounded by two control points in the middle of the duct, linked to the onset of instability and turbulence, whereas a two-layer model only predicts one control point. We show that the nonlinear characteristics of the three-layer model correspond to linear long waves perturbing a three-layer mean flow. We also provide the first evidence of long-wave resonance, as well as resonance between long and short waves, and their connection to turbulence. These results challenge current parameterisations for turbulent transport, which typically overlook long waves and internal hydraulics induced by streamwise variations of the flow.
We address the Reynolds number dependence of the turbulent skin-friction drag reduction induced by streamwise-travelling waves of spanwise wall oscillations. The study relies on direct numerical simulations of drag-reduced flows in a plane open channel at friction Reynolds numbers in the range $1000 \leqslant Re_\tau \leqslant 6000$, which is the widest range considered so far in simulations with spanwise forcing. Our results corroborate the validity of the predictive model proposed by Gatti & Quadrio (J. Fluid Mech. vol. 802, 2016, pp. 553–558): regardless of the control parameters, the drag reduction decreases monotonically with $Re$ at a rate that depends on the drag reduction itself and on the skin-friction of the uncontrolled flow. We do not find evidence in support of the results of Marusic et al. (Nat. Commun. vol. 12, no. 1, 2021, pp. 5805), which instead report by experiments an increase of the drag reduction with $Re$ in turbulent boundary layers, for control parameters that target low-frequency, outer-scaled motions. Possible explanations for this discrepancy are provided, including obvious differences between open channel flows and boundary layers, and possible limitations of laboratory experiments.
By incorporating leading-edge (L-E) protuberances inspired by humpback whale flippers, this study enhances hydrodynamic performance, mitigates cavitation effects and develops efficient models to minimise noise emissions in aquatic systems. Experimental and numerical simulations are conducted on four semi-elliptical NACA 16020 three-dimensional (3-D) hydrofoils, including a baseline hydrofoil and three modified versions featuring sinusoidal L-E alterations. These alterations encompass amplitudes of 2 %, wavelengths of 8.33 % and 4.1667 % of the mean chord length (C), and wavenumbers of 12 and 6. Experimental analysis encompassing both cavitational and non-cavitational regimes at varying attack angles revealed significant relationships between the hydrodynamic performance and partial sheet cavitation. Hydrodynamic force analysis shows that hydrofoils with L-E protuberances generate elevated lift at moderate and high angles of attack (AOA) in cavitating and non-cavitating conditions. Under lower-severity cavitating conditions, models with L-E protuberances exhibit no significant reduction in sound pressure level. In contrast, at higher severity, the presence of L-E protuberances effectively reduces the flow-induced noise, with partial cavities covering 30 %–50 % of the chord. Numerical simulations were conducted to investigate the turbulent kinetic energy (TKE) distribution and the presence of counter-rotating vortices on each protuberance. The results reveal a significantly enhanced TKE around the trough area and the presence of counter-rotating vortices at each protuberance peak. The more realistic asymmetric design performed better than the other modifications regarding hydrodynamic force, whereas the symmetric model with wavelengths of 8.33 % excelled at cavitation and noise suppression. Therefore, this study offers promising avenues for advancing hydrofoil design in diverse engineering domains.
The rapid development of AI has resulted in an unprecedented paradigm shift across various industries, with aerospace among the laureates of this transformation. This review paper attempts to explore and provide comprehensive overview of the aerospace research imperatives from the AI perspective, detailing the technical sides of the full lifecycle from vehicle design and operational optimisation to advanced air traffic management systems. By examining real-world engineering implementations, the review demonstrates how AI-driven solutions are directly addressing longstanding challenges in aerospace, such as optimising flight performance, reducing operational costs and improving system reliability. A significant emphasis is placed on the crucial roles of AI in health monitoring and predictive maintenance, areas that are pivotal for ensuring the safety and longevity of aerospace endeavors, and which are now increasingly adopted in industry for remaining useful life (RUL) forecasting and condition-based maintenance strategies. The paper also discusses AI embedded in quality control and inspection processes, where it boosts accuracy, efficiency and fault detection capability. The review provides insight into the state-of-the-art applications of AI in planetary exploration, particularly within the realms of autonomous scientific instrumentation and robotic prospecting, as well as surface operations on extraterrestrial bodies. An important case study is India’s Chandrayaan-3 mission, demonstrating the application of AI in both autonomous navigation and scientific exploration within the challenging environments of space. By furnishing an overview of the field, the paper frames the ever-important, increasing domains of AI as the forefront in the advancement of aerospace engineering and opens avenues for further discussion regarding the limitless possibilities at the juncture of intelligent systems and aerospace innovation.
We investigate the effects of external harmonic forcing on flow through a duct with square cross-section containing two circular orifice plates – a double-orifice cavity – at an operating condition where self-sustained limit cycle oscillations are observed. When the oscillatory flow is periodically forced at a frequency $f_f$ near its natural frequency $f_n$ ($0.9\leqslant f_f /f_n \leqslant 1.1$), it undergoes lock-in and amplitude suppression through synchronous quenching. We observe phase-drifting (or phase-slipping) prior to lock-in that happens via a saddle-node bifurcation. However, when the flow system is forced far from its natural frequency ($0.8\leqslant f_f /f_n\leqslant 0.9$ and $1.1\leqslant f_f /f_n\leqslant 1.4$) lock-in happens via asynchronous quenching through a Neimark–Sacker bifurcation (torus death). In asynchronous quenching, phase-drifting and phase-trapping are observed before lock-in. An asymmetry is present in the synchronization map on forcing either side of the natural frequency, which becomes more pronounced in the asynchronous quenching regime. There is also an observed saturation of the synchronization map for $f_f/f_n\gt 1$ over the range of frequencies explored. Subharmonic synchronization or $1:2$ lock-in with period-two oscillations is also observed when the system is forced near $f_n/2$ ($ 0.49 \leqslant f_f /f_n \leqslant 0.51$). The route to lock-in consists of a three frequency regime where subharmonics of the forcing frequency ($f_f/2$ and $f_f/3$) play an important role in the dynamics. The transition from $1:1$ to $1:2$ lock-in occurs via a de-lock-in regime ($ 0.55 \leqslant f_f /f_n \leqslant 0.65$), where a lock-in boundary is present; i.e. the system delocks after lock-in if the amplitude is raised beyond a critical value. The de-lock-in regime is also characterized by a nonlinear phase drift after de-lock-in and a significant jump in the forcing amplitude for lock-in for $f_f/f_n=0.6$. Amplification is observed for $f_f/f_n\gt 1$ and also in the $1:2$ lock-in and de-lock-in regimes where the total signal power exceeds the unforced system’s power for small increases in forcing amplitude after lock-in. Based on these results, we identify the asynchronous quenching regime for $f_f/f_n\lt 1$ as the optimal frequency range where active control is most effective. Finally, we introduce a reduced-order phenomenological model based on vortex–acoustic interaction dynamics from first principles. The model correctly identifies the four regimes, their dynamics leading to lock-in, and asymmetry and saturation in the synchronization map.
The evaporation of liquid from within a porous medium is a complicated process involving coupled capillary flow, vapour diffusion and phase change. Different drying behaviour is observed at different stages during the process. Initially, liquid is drawn to the surface by capillary forces, where it evaporates at a near constant rate; thereafter, a drying front recedes into the material, with a slower net evaporation rate. Modelling drying porous media accurately is challenging due to the multitude of relevant spatial and temporal scales, and the large number of constitutive laws required for model closure. Key aspects of the drying process, including the net evaporation rate and the time of the sudden transition between stages, are not well understood or reliably predicted. We derive simplified mathematical models for both stages of this drying process by systematically reducing an averaged continuum multi-phase flow model, using the method of matched asymptotic expansions, in the physically relevant limit of slow vapour diffusion relative to the local evaporation rate (the large-Péclet-number limit). By solving our reduced models, we compute the evolving net evaporation rate, fluid fluxes and saturation profiles, and estimate the transition time to be when the initial constant-rate-period model ceases to be valid. We additionally characterise properties of the constitutive laws that affect the qualitative drying behaviour: the model is shown to exhibit a receding-front period only if the relative permeability for the liquid phase decays sufficiently quickly relative to the blow up in the capillary pressure as the liquid saturation decreases.
Following Scott & Cambon (2024 J. Fluid Mech. vol. 979, A17), henceforth referred to as [I], a spectral approach is used and the flow is expressed as a sum of normal modes, which are of two types: inertial/gravity waves and non-propagating (NP) modes. It was shown in [I] that, for weak (small Rossby or Froude number) turbulence, the NP component of the flow decouples from the waves at leading order and here we focus on the NP part alone. It is demonstrated that the evolution equations of the NP component are equivalent to the three-dimensional, quasi-geostrophic (QG) approximation of geophysical fluid dynamics. For QG turbulence, the seminal paper of Charney (1971 J. Atmos. Sci. vol. 28, pp. 1087–1095), referred to as [II], concluded that, as for two-dimensional turbulence, the energy cascade for QG turbulence should go from smaller to larger scales and that the inertial-range spectrum at wavenumber $k$ should behave as $k^{-3}$. He also proposed that the energy distribution in spectral space is isotropic if the vertical wavenumber is appropriately scaled and deduced a principle of equipartition in which the average kinetic energy is twice the potential one. We use Charney’s transformation of spectral coordinates to effectively eliminate the parameter $\beta =2{\varOmega} /N$, where ${\varOmega}$ is the rotation rate and $N$ the Brunt–Vaisala frequency, and give results of numerical calculations concerning the energy distribution. The results mostly agree with [II] at large enough times, although they do not support Charney isotropy. They further suggest self-similarity of the time evolution of the three-dimensional energy distribution in spectral space away from the vertical axis.
This paper presents an experimental application of reactive control to jet installation noise based on destructive interference. The work is motivated by the success of previous studies in applying this control approach to mixing layers (Sasaki et al. Theor. 2018b Comput.FluidDyn. 32, 765–788), boundary layers (Brito et al. 2021 Exp.Fluids62, 1–13; Audiffred et al. 2023 Phys.Rev.Fluids8, 073902), flow over a backward-facing step (Martini et al. 2022 J.FluidMech. 937, A19) and, more recently, to turbulent jets (Maia et al. 2021 Phys.Rev.Fluids6, 123901; Maia et al. 2022 Phys. Rev. Fluids7, 033903; Audiffred et al. 2024b J. FluidMech. 994, A15). We exploit the fact that jet–surface interaction noise is underpinned by wavepackets that can be modelled in a linear framework and develop a linear control strategy where piezoelectric actuators situated at the edge of a scattering surface are driven in real time by sensor measurements in the near field of the jet, the objective being to reduce noise radiated in the acoustic field. The control mechanism involves imposition of an anti-dipole at the trailing edge to cancel the scattering dipole that arises due to an incident wavepacket perturbation. We explore two different control strategies: (i) the inverse feed-forward approach, where causality is imposed by truncating the control kernel, and (ii) the Wiener–Hopf approach, where causality is optimally enforced in building the control kernel. We show that the Wiener–Hopf approach has better performance than that obtained using the truncated inverse feed-forward kernel. We also explore different positions of the near-field sensors and show that control performance is better for sensors installed for streamwise positions downstream in the jet plume, where the signature of hydrodynamic wavepacket is better captured by the sensors. Broadband noise reductions of up to 50 % are achieved.
Accurate estimation of finger joint stiffness is important in assessing the hand condition of stroke patients and developing effective rehabilitation plans. Recent technological advances have enabled the efficient performance of hand therapy and assessment by estimating joint stiffness using soft actuators. While joint modular soft actuators have enabled cost-effective and personalized stiffness estimation, existing approaches face limitations. A corrective approach based on an analytical model suffers from actuator–finger and inter-actuator interactions, particularly in multi-joint systems. In contrast, a data-driven approach struggles with generalization due to limited availability of labeled data. In this study, we proposed a method for energy conservation-based online tuning of the analytical model using an artificial neural network (ANN) to address these challenges. By analyzing each term in the analytical model, we identified causes of estimation error and introduced correction parameters that satisfy energy balance within the actuator–finger complex. The ANN enhances the analytical model’s adaptability to measurement data, thereby improving estimation accuracy. The results show that our method outperforms the conventional corrective approach and exhibits better generalization potential than the purely data-driven approach. In addition, the method also proved effective in estimating stiffness in human subjects, where errors tend to be larger than in prototype experiments. This study is an essential step toward the realization of personalized rehabilitation.
The crystal structure of quizartinib hydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Quizartinib hydrate crystallizes in space group P-1 (#2) with a = 13.9133(9), b = 17.877(3), c = 19.8459(30) Å, α = 115.080(5), β = 93.768(5), γ = 100.831(5)°, V = 4,332.1(6) Å3, and Z = 6 at 298 K. In the complex crystal structure, the molecules are generally oriented parallel to the (110) plane. Two of the independent molecules are linked into dimers by N–H···O or N–H···N hydrogen bonds. Each molecule exhibits a unique pattern of C–H···O, C–H···N, or C–H···S hydrogen bonds. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
This work presents detailed 3D modelling and simulation of the mechanical effects induced by lightning strikes in protected carbon fibre-reinforced polymer laminates. Firstly, physically based models that represent the mechanical overpressure that results from a lightning strike are revisited. In particular, this paper compares the implementation of an analytical strong shock wave approximation with the solutions obtained from computational fluid dynamics (CFD), considering different equations of state, to represent the supersonic expansion of the hot plasma channel when simulating the mechanical damage induced by lightning strikes. The assessment of the pressure profiles, the numerical predictions of the displacement and velocity fields and the analysis of the predicted damage maps show that, for two lightning protection layers, the effects of the supersonic plasma expansion loads obtained from the strong shock wave approximation compare reasonably well with those obtained from CFD, independently of the equation of state solved numerically. Subsequently, the predictions of the 3D modelling strategy of the mechanical response of composite laminates subjected to lightning strike employing the strong shock wave approximation are compared with mechanical deformation measurements obtained from lab-scale lightning test results. Accurate deflection and out-of-plane velocity fields are predicted, validating the 3D modelling strategy. Moreover, the predicted damage maps correlate well with the (bulk) damage identified by C-scan (considering only the damaged area below the second ply).
The Myoshirt, an active exosuit, provides gravity compensation for the shoulders. This study evaluated the impact of the Myoshirt on range of motion (ROM), endurance, and activities of daily living (ADLs) performance through tests involving nine participants with varying levels of arm impairments and diverse pathologies. Optical motion capture was used to quantify ROM of the shoulder and elbow joints during isolated movements and functional tasks. Endurance was quantified through a timed isometric shoulder flexion task, and a battery of ADL tasks was used to measure the perceived support of the exosuit, along with changes in movement quality. Feedback and usability insights were gathered with surveys. The Myoshirt did not significantly improve ROM during isolated movements (shoulder flexion, shoulder abduction, and elbow flexion/extension), but during the reaching phase of a functional drinking task elbow extension increased significantly by 13.5% (t = 7.52, p = .002). Participants could also keep their arms elevated 78.7% longer (t = 1.942, p = .047). Patients also reported less perceived difficulty with ADLs while using the device, and a therapist reported improved execution quality. Participants who self-reported severe impairment levels tended to derive greater benefits compared to those with milder impairments. These findings highlight the potential of the Myoshirt as an assistive device, particularly for individuals with severe impairments, while emphasizing the need for further refinement.
Several million years of natural evolution have endowed marine animals with high flexibility and mobility. A key factor in this achievement is their ability to modulate stiffness during swimming. However, an unresolved puzzle remains regarding how muscles modulate stiffness, and the implications of this capability for achieving high swimming efficiency. Inspired by this, we proposed a self-propulsor model that employs a parabolic stiffness-tuning strategy, emulating the muscle tensioning observed in biological counterparts. Furthermore, efforts have been directed towards developing the nonlinear vortex sheet method, specifically designed to address nonlinear fluid–structure coupling problems. This work aims to analyse how and why nonlinear tunable stiffness influences swimming performance. Numerical results demonstrate that swimmers with nonlinear tunable stiffness can double their speed and efficiency across nearly the entire frequency range. Additionally, our findings reveal that high-efficiency biomimetic propulsion originates from snap-through instability, which facilitates the emergence of quasi-quadrilateral swimming patterns and enhances vortex strength. Moreover, this study examines the influence of nonlinear stiffness on swimming performance, providing valuable insights into the optimisation of next-generation, high-performance, fish-inspired robotic systems.
We study the mixing of passive scalars in a velocity field generated by selected-eddy simulations (SES), an approach where only a randomly selected subset of spectrally distributed modes obey Navier–Stokes dynamics. The Taylor Reynolds number varies from 140 to 400 and the Schmidt number ($Sc$) varies from 0.25 to 1. By comparing the results with direct numerical simulations (DNS), we show that most statistics are captured with as low as $0.5\,\%$ of Navier–Stokes modes in the velocity field. This includes scalar gradients, spectra, structure functions and their departures from classical scaling due to intermittency. The results suggest that all modes need not be resolved to accurately capture turbulent mixing for $Sc\leqslant 1$ scalars.
Understanding how bubbles on a substrate respond to ultrasound is crucial for applications from industrial cleaning to biomedical treatments. Under ultrasonic excitation, bubbles can undergo shape deformations due to Faraday instability, periodically producing high-speed jets that may cause damage. While recent studies have begun to elucidate this behaviour for free bubbles, the dynamics of wall-attached bubbles is still largely unexplored. In particular, the selection and evolution of non-spherical modes in these bounded systems have not previously been resolved in three dimensions, and the resulting jetting dynamics has yet to be compared with that observed in free bubbles. In this study, we investigate individual micrometric air bubbles in contact with a rigid substrate and subjected to ultrasound. We introduce a novel dual-view imaging technique that combines top-view bright-field microscopy with side-view phase-contrast X-ray imaging, enabling visualisation of bubble shape evolution from two orthogonal perspectives. This set-up reveals the progression of bubble shape through four distinct dynamic regimes: purely spherical oscillations, onset of harmonic axisymmetric meniscus waves, emergence of half-harmonic axisymmetric Faraday waves and the superposition of half-harmonic sectoral Faraday waves. This stepwise evolution contrasts with the behaviour of free bubbles, which exhibit their ultimate Faraday wave pattern immediately upon instability onset. For the substrate chosen, the resulting shape-mode spectrum appears to be degenerate and exhibits a continuous range of shape mode degrees, in line with our theoretical predictions derived from kinematic arguments. While free bubbles also display a degenerate spectrum, their shape mode degrees remain discrete, constrained by the bubble spherical periodicity. Experimentally measured ultrasound pressure thresholds for the onset of Faraday instability agree well with classical interface stability theory, modified to incorporate the effects of a rigid boundary. Complementary three-dimensional boundary element simulations of bubble shape evolution align closely with experimental observations, validating this method’s predictive capability. Finally, we determine the acceleration threshold at which shape mode lobes initiate cyclic jetting. Unlike free bubbles, jetting in wall-attached bubbles consistently emerges from the side not restricted by the substrate.
We focus on the wake of a cylinder placed in uniform flow and forced to rotate periodically at subcritical Reynolds numbers, i.e. for Reynolds numbers smaller than 47 calculated based on the incoming flow velocity and the cylinder diameter, where vortices are not shed in the wake of a fixed cylinder. We show that in the near wake, the imposed periodic rotation causes the Föppl vortices (the symmetric steady vortices that are formed right behind a fixed cylinder within the Reynolds number range of $5\lt {Re}\lt 47$) to appear only momentarily during each rotation cycle until they disappear at higher rotation rates. In the far wake, vortices can be induced for certain values of rotation rate, $\alpha$, and rotation frequency, $f$. The shedding of these vortices in the wake results in a periodic lift force that acts on the cylinder. We have defined a new parameter $\omega /(f\alpha )\equiv 1/F$, where $\omega$ is the angular velocity of the cylinder, which is significant in describing the system. For any values of angular velocity and the frequency of change in the rotation direction, the wake pattern remains the same if the value of $1/F$ stays constant. Subsequently, the fluctuating lift coefficient and the average drag coefficient peak at the same value of $1/F$ for any value of $\omega /f\equiv \alpha /F$. The Reynolds number for the onset of shedding decreases with increasing rotation rate at a constant $\alpha /F$. We have observed shedding at Reynolds numbers as low as ${Re}=1$ for higher rotation rates.
Axisymmetric turbulent boundary layers are of great significance in industry and the fluid dynamics community. In this paper, direct numerical simulations of an axially developing axisymmetric turbulent boundary layer along a slender cylinder are performed. Periodical suction and blowing perturbation are used to trigger the transition from laminar inflow to turbulent flow downstream, resulting in the boundary layer thickness varying from 7 to 13 times the cylinder radius, and the friction Reynolds number varying from 300 to 510. Turbulence statistics including wall friction coefficient, mean velocity profile and Reynolds stresses are obtained. The turbulence intensities are weakened compared with the planar turbulent layer, and the inter-component energy transfer is also inhibited. A curvature-weighted transformation is proposed, and the transformed Reynolds stresses and mean velocity deficit collapse well with the planar case in the near-wall region. The velocity streaks and vortical structures are explored. The wall-normal variation of the mean spanwise spacing of low-speed streaks is greatly influenced by the cylindrical geometry. Quasi-streamwise vortices dominate the near-wall region, and the arch vortices are prevalent in the outer region. The prograde hairpin vortices can be commonly observed.
A rotating detonation combustor exhibits corotating $N$-wave modes with $N$ detonation waves propagating in the same direction. These modes and their responses to ignition conditions and disturbances were studied using a surrogate model. Through numerical continuation, a mode curve (MC) is obtained, depicting the relationship between the wave speed of the one-wave mode and a defined baseline of the combustor circumference ($L_{{base}}$) under fixed equation parameters, limited by deflagration and flow choking. The modes’ existence is confirmed by the equivalence between a one-wave mode within a combustor with circumference $L_{{base}}$/$N$ on the MC and an $N$-wave mode in an $L_{{base}}$ combustor. The stability, measured by the real part of the eigenvalue from linear stability analysis (LSA), revealed the dynamic properties. When multiple stable modes exist under the same parameters, ignition conditions with a spatial period of $L_{{base}}$/$N$ are more likely to form $N$-wave modes. An unstable evolution in formed modes, occurs in the dynamics from stable to unstable modes through saddle-node bifurcation and Hopf bifurcation induced by parameter perturbations and from unstable to stable modes induced by state disturbances. Eigenmodes from LSA reveal mechanisms of the unstable evolution, including the effect of secondary deflagration in the unstable one-wave mode and competitive interaction between detonation waves in the unstable multiwave mode, crucial for the combustor to mode transition.