To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The physical relevance of fluctuations in a probabilistic language demands the illustration of basic mathematical tools, including the central limit theorem and the theory of large deviations. A short summary about random matrix theory precedes the model of generalized random walks, which includes Levy flights and walks as representations of anomalous diffusive processes. Einstein's approach to the role of fluctuations in thermodynamic processes is detailed for both an isolated and a thermalized thermodynamic system. An introduction to stochastic thermodynamics and to generalized fluctuation theorems is finally discussed.
An interface is rough if the mean square fluctuations of its position diverge at large times and system sizes. This may occur when the interface is driven out of equilibrium in the presence of some noise and the way roughness diverges defines suitable critical exponents. We introduce and discuss extensively two important universality classes: the Edwards–Wilkinson and the Kardar–Parisi–Zhang. The latter has been the subject of renewed interest since it was possible to determine analytically the whole spectrum of fluctuations and it was found an experimental system satisfying such predictions with great accuracy. The last part of the chapter is devoted to nonlocal models, specifically the celebrated Diffusion Limited Aggregation.
According to the International Code of Zoological Nomenclature (ICZN, 1999), the Principle of Homonymy (Article 52) states that when two or more taxa are distinguished from each other, they must not be denoted by the same name because this would cause confusion. Consequently, in a case of homonymy, only the senior name may be used as valid (Art. 52.2). The ICZN (1999) also indicates that if the rejected junior homonym has no known available and potentially valid synonym, it must be replaced by a new substitute name (Art. 60.3), that is, a replacement name.
The phenomenological theory proposed by Einstein for interpreting the phenomenon of Brownian motion is described in detail. The alternative approaches due to Langevin and Fokker–Planck are also illustrated. The theory of Markov chains is also reported as a basic mathematical approach to stochastic processes in discrete space and time; various of its applications, for example, the Monte Carlo method, are also illustrated. The theory of stochastic equations, as a representation of stochastic processes in continuous space–time, is discussed and used for obtaining a generalized, rigorous formulation of the Langevin and Fokker–Planck equations for generalized fluctuating observables. The Arrhenius formula as an example of the first exit-time problem is also derived.
Three fossil tube fragments from middle Eocene to late Oligocene strata in western Washington State, USA, are here interpreted as those of ancient Ceriantharia (Hexacorallia, Cnidaria). The tube fragments are 3–6 mm in diameter, up to 60 mm long, and the surfaces show an overlapping, fibrous knitted pattern. This surface pattern resembles that of the extant ceriantharid Cerianthus membranaceus. One specimen has numerous benthic foraminiferans associated with, and apparently even embedded in, the tube wall, analogous to some extant Ceriantharia. These fossils likely represent the first fossil Ceriantharia and indicate that their present-day mode of tube construction using ptychocysts was established at latest by the middle Eocene.
This chapter examines the related objectives of defining spatial clusters and delineating spatial boundaries in discontinuous data. The former often proceeds by grouping together adjacent locations when they have the most similar characteristics; the latter proceeds by estimating boundaries between locations that are most different. For this, there are several methods available that suggest ’boundary elements’ as possible components of a final division or complete boundary, depending on the kind of data (e.g. binary versus qualitative versus continuous quantitative) and the arrangement of the measured locations (e.g. regular lattice versus irregular spatial network). Once boundaries have been established, statistics are available to evaluate them, including boundary overlap measures. Clusters and boundaries represent two aspects of the same phenomenon, with the same challenge of formalizing similarity and difference in continuous spatial data.
Distinguishing between Stomylotrema bijugum and S. vicarium is challenging due to their phenotypic plasticity. In this study, adult specimens were recovered from 9 host species in the Mexican tropical lowlands. To explore the morphological differences, 32 morphological characteristics were evaluated in 54 specimens. Linear discriminant analysis provided enough evidence to differentiate the 2 species. Additionally, a principal component analysis (PCA) was performed for each species. The PCA of S. bijugum revealed 3 groups separately corresponding to specimens from the 3 hosts, suggesting host-induced phenotypic plasticity, whereas the PCA of S. vicarium revealed that the specimens from 3 host species were clustered together, indicating morphometric homogeneity. To confirm the morphological differences between the 2 species of Stomylotrema, we sequenced 2 molecular markers: the D1–D3 domains of the large subunit (LSU) from nuclear DNA and nicotinamide adenine dinucleotide dehydrogenase subunit 1 (Nad1) from mitochondrial DNA. Sequences of the LSU were aligned and compared with the LSU sequences of other congeneric species available in GenBank. Phylogenetic analyses supported the monophyly of Stomylotrema, with 2 main subclades that corresponded to S. bijugum and S. vicarium. A haplotype network was predicted with 25 Nad1 sequences, revealing the presence of 2 clusters representing the 2 species separated from each other by 98 substitutions. The current studies on S. bijugum and S. vicarium revealed new hosts and geographical regions in the Americas, suggesting that both species addressed in the current study can complete their life cycle in the Neotropical region of Mexico.
Almost 12 % of the human population have insufficient access to food and hence are at risk from nutrient deficiencies and related conditions, such as anaemia and stunting. Ruminant meat and milk are rich in protein and micronutrients, making them a highly nutritious food source for human consumption. Conversely, ruminant production contributes to methane (CH4) emissions, a greenhouse gas (GHG) with a global warming potential (GWP) 27–30 times greater than that of carbon dioxide (CO2). Nonetheless, ruminant production plays a crucial role in the circular bioeconomy in terms of upcycling agricultural products that cannot be consumed by humans, into valuable and nutritional food, whilst delivering important ecosystem services. Taking on board the complexities of ruminant production and the need to improve both human and planetary health, there is increasing emphasis on developing innovative solutions to achieve sustainable ruminant production within the ‘One Health’ framework. Specifically, research and innovation will undoubtedly continue to focus on (1) Genetics and Breeding; (2) Animal nutrition and (3) Animal Health, to achieve food security and human health, whilst limiting environmental impact. Implementation of resultant innovations within the agri-food sector will require several enablers, including large-scale investment, multi-actor partnerships, scaling, regulatory approval and importantly social acceptability. This review outlines the grand challenges of achieving sustainable ruminant production and likely research and innovation landscape over the next 15 years and beyond, specifically outlining the pathways and enablers required to achieve sustainable ruminant production within the One Health framework.
This final chapter is a short introduction to pattern-forming systems, which highlights a few concepts and models rather than pretending to give a general overview (which is impossible in 40 pages). We focus on stationary bifurcations, distinguishing between scenarios where the critical wavevector vanishes and where it is a finite value, because they have different nonlinear behaviors. A few pages are devoted to describe some different experimental setups: thermal convection (a fluid heated from below, showing the rising of convection cells); unstable growth process (under particle deposition, with the formation of mounds); and a rotating mixture of granular systems (with their phase separation).