To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Many of the classical inequalities of analysis can be written in the form P(x) ≥ 0 for x ∈ I or P(x) > 0 for x ∈ I′, where P(x) is a polynomial and I′ ⊂ I are certain intervals on the real line. This gives rise to the question of where the zeros of P(x) are located. For example, if f is a polynomial with real zeros, then an inequality of Laguerre [8, p. 171 f.] asserts that
for all x. A detailed study of the zeros of this particular P(x) has been made [5].
This paper is the first part in a four-part series which develops the spectral theory for a two-point differential operator L in L2[0, 1] determined by a second order formal differential operator l = −D2 + pD + q and by independent boundary values B1, B2. The differential operator L is classified as belonging to one of five cases, Cases 1–5, according to conditions satisfied by the coefficients of B1, B2. For Cases 1–4 it is shown that if λ = ρ2 is any eigenvalue of L with ∣ρ∣ sufficiently large, then ρ lies in the interior of a horizontal strip (Cases 1–3) or the interior of a logarithmic strip (Case 4), and in each of these cases the generalised eigenfunctions of L are complete in L2[0, 1].
The discrete coagulation-fragmentation equations are a model for the time-evolution of cluster growth. The processes described by the model are the coagulation of clusters via binary interactions and the fragmentation of clusters. The assumptions made on the fragmentation coefficients in this paper have the physical interpretation that surface effects are not important, i.e. it is unlikely that a large cluster will fragment into two large pieces. Since solutions of the initial-value problem are not unique, we have to restrict the class of solutions. With this restriction, we prove that the fragmentation acts as a strong damping mechanism and we obtain results on the asymptotic behaviour of solutions. The main tool used is an estimate on the moments of admissible solutions.
For piston problems for a system of isentropic gas dynamics, convergence theorems of a difference scheme are obtained by compensated compactness theory and by analysis of the difference scheme.
This paper is concerned with homogenisation processes for parametrised families of transport equations in ℝn symmetric hyperbolic systems in several space dimensions and anisotropic wave equations. The main tools for carrying out the homogenisation are the Young measures and Radon transform combined with the integral representation of holomorphic functions of Nevanlinna-Pick's type.
An initial boundary value problem of Riemann type is solved for the nonlinear pseudoparabolic equation with two space variables
The complex function H is measurable on ℂ ×I × ℂ5, with I being an interval of the real line ℝ, Lipschitz continuous with respect to the last five variables, with the Lipschitz constant for the last variable being strictly less than one (ellipticity condition). No smallness assumption is needed in the argument.
We use the concentration compactness principle to study the existence of a minimiser of the minimisation problem where u =(u1, …, uN), . We also prove the boundedness of the minimiser of l1 by using the reverse Holder inequality.
Weakly coupled semilinear elliptic systems of the form
are considered in RN, N≧2, where k = 1, 2, …, M, u = (u1, …, uM) and λ is a real constant. The aim of this paper is to give sufficient conditions for (*) to have entire solutions whose components are positive in RN and converge to non-negative constants as |x| tends to ∞. For this purpose a new supersolution-subsolution method is developed for the system (*) without any hypotheses on the monotonicity of the non-linear terms fk with respect to u.
Let Hbe a complex Hilbert space and let B(H) be the algebra of (bounded) operators on H. Let A =(A,…,An) be an n-tuple of operators on H. The joint numerical range of A is the subset W(A) of ℂn such that
The question of “correctness” of cardinal interpolation with shifted three-directional box splines is solved for arbitrary orders of the directional vectors. It is shown that the corresponding symbol can be viewed as a collection of curves with certain properties (convexity, increasing argument, etc.) which are investigated in detail. The method of proof involves an induction argument which is based on properties of the exponential Euler splines (studied in [6]).
Components in the function space of maps from a space X to the classifying space BG of a topological group G can sometimes be distinguished up to homotopy type by a Samelson product method. When X is a closed Riemann surface and G is a unitary group, this method is nearly sufficient to classify the components up to homotopy type.
In an operator algebra, the general element of the connected component of the unitary group can beexpressed as a finite product of exponential unitary elements. The recently introduced concept of exponential rank is defined in terms of the number of exponentials required for this purpose. The present paper is concerned with a concept of exponential length, determined not by the number of exponentials but by the sum of the norms of their self-adjoint logarithms. Knowledge of the exponential length of an algebra provides an upper bound for its exponential rank (but not conversely). This is used to estimate the exponential rank of certain algebras of operator-valued continuous functions.
In this paper we determine the possible crest-forms of permanent waves of small amplitude which exist on the free surface of a two-dimensional fluid layer under the influence of gravity and surface tension when the Froude number is close to 1. The Bond number b, measuring surface tension, is assumed to satisfy b < ⅓. We find one-parameter families of periodic waves of two different types, quasiperiodic waves and solitary waves with oscillations at infinity. The existence of true solitary waves is established for a sequence of systems approximating the full Euler equations in every algebraic order of − 1.
In this note we characterize certain types of spectral decomposition in terms of “universal” notions valid for any operator on a Banach space. To be precise, let X be a complex Banach space and let T be a bounded linear operator on X. If F is a closed set in the plane C, let X(T, F) consist of all y ∈ X satisfying thes identity
where f:C\F → X is analytic. It is then easy to see that X(T, F) is a T-invariant linear manifold in X. Moreover, if y ∈ X then
is a compact subset of the spectrum σ(T). Our aim is to give necessary and sufficient conditions for a decomposable or strongly decomposable operator in terms of X(T, F) and γ(y, T). Recall that T is decomposable if whenever G1G2 are open and cover C there exist T-invariant closed linear manifolds M1, M2 with X= M1 + M2 and σ(T | M1) ⊂ Gi(i = 1,2) (equivalently, σ(T | Mi)⊂ Ḡi, see [4, p. 57]). In this case, X(T, F) is norm closed if Fis closed and each y in X has a unique maximally defined local resolvent satisfying (1.1) on C\Fy; Fy is called the local spectrum σ(y, T) and coincides with γ(y, T). Hence T has the single valued extension property (SVEP); i.e., zero is the only analytic function f:V → X satisfying (z − T)f(z) = 0 on V. If T is decomposable and the restriction T | X(T, F) is also decomposable for each closed F, then T is called strongly decomposable. We point out that Albrecht [2] has shown by example that not every decomposable operator is strongly decomposable, while Eschmeier [6]has given a simpler construction to show that this phenomenon occurs even in Hilbert space.
In this paper we characterize the universal pointed actions of a semigroup S on a compact space such that the orbit of the distinguished point is dense; such actions are called transitive. The characterization is given in terms of the universal right topological monoidal compactification of S. All transitive actions are shown to arise as quotients modulo left congruences on this universal compactification. Minimal actions are considered, and close connections between these and minimal left ideals of the compactification are derived.