To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we prove existence results of a one-dimensional periodic solution to equations with the fractional Laplacian of order $s\in (1/2,1)$, singular nonlinearity and gradient term under various situations, including nonlocal contra-part of classical Lienard vector equations, as well other nonlocal versions of classical results know only in the context of second-order ODE. Our proofs are based on degree theory and Perron's method, so before that we need to establish a variety of priori estimates under different assumptions on the nonlinearities appearing in the equations. Besides, we obtain also multiplicity results in a regime where a priori bounds are lost and bifurcation from infinity occurs.
It is proved that if $\varphi \colon A\to B$ is a local homomorphism of commutative noetherian local rings, a nonzero finitely generated B-module N whose flat dimension over A is at most $\operatorname {edim} A - \operatorname {edim} B$ is free over B and $\varphi $ is a special type of complete intersection. This result is motivated by a ‘patching method’ developed by Taylor and Wiles and a conjecture of de Smit, proved by the first author, dealing with the special case when N is flat over A.
In this paper, we establish an infinite series expansion of Leray–Trudinger inequality, which is closely related with Hardy inequality and Moser Trudinger inequality. Our result extends early results obtained by Mallick and Tintarev [A. Mallick and C. Tintarev. An improved Leray-Trudinger inequality. Commun. Contemp. Math. 20 (2018), 17501034. OP 21] to the case with many logs. It should be pointed out that our result is about series expansion of Hardy inequality under the case $p=n$, which case is not considered by Gkikas and Psaradakis in [K. T. Gkikas and G. Psaradakis. Optimal non-homogeneous improvements for the series expansion of Hardy's inequality. Commun. Contemp. Math. doi:10.1142/S0219199721500310]. However, we can't obtain the optimal form by our method.
In this paper we are interested in comparing the spectra of two elliptic operators acting on a closed minimal submanifold of the Euclidean unit sphere. Using an approach introduced by Savo in [A Savo. Index Bounds for Minimal Hypersurfaces of the Sphere. Indiana Univ. Math. J. 59 (2010), 823-837.], we are able to compare the eigenvalues of the stability operator acting on sections of the normal bundle and the Hodge Laplacian operator acting on $1$-forms. As a byproduct of the technique and under a suitable hypothesis on the Ricci curvature of the submanifold we obtain that its first Betti's number is bounded from above by a multiple of the Morse index, which provide evidence for a well-known conjecture of Schoen and Marques & Neves in the setting of higher codimension.
Chapter 2 develops the basic notion of Formal Noncommutative Reproducing-Kernel Hilbert Space which generalizes the classical notion of Reproducing Kernel Hilbert Space to a noncommutative setting. This formalism in turn is a convenient formalism for modeling freely noncommutative shift-operator tuples.
Chapter 9 is also concerned with weighted Hardy–Fock spaces but with the associated kernel function for the weighted Hardy–Fock space having a certain prescribed form. The resulting weight sequence satisfies the admissibility requirements imposed in earlier chapters only in special cases. Consequently, the results (and associated formulas) parallel the results from earlier chapters, but with the associated formulas having a more complicated form involving explicitly the parameters appearing in the prescribed kernel function. The resulting operator-model theory generalizes earlier such results appearing in the literature for the commutative case.
We consider inverse nodal problems for the Sturm–Liouville operators on the tree graphs. Can only dense nodes distinguish the tree graphs? In this paper it is shown that the data of dense-nodes uniquely determines the potential (up to a constant) on the tree graphs. This provides interesting results for an open question implied in the paper.
Chapter 4 is concerned with the state/output part of a noncommutative linear system and the range of the associated observability operator. Specifically, (i) observability operators having range landing inside of a given weighted Hardy–Fock space are characterized by the existence of a solution to certain Linear Matrix Inequality (Linear Operator Inequality in general) called a Stein inequality, (ii) conversely, subspaces of a given weighted Hardy–Fock space arising as the range of a contractive observability operator are characterized as contractively included backward-shift-invariant subspaces of the ambient Hardy–Fock space having some additional natural structural properties.
Chapter 3 introduces the notion of a contractive multiplier between weighted Hardy–Fock spaces (the analog of a Schur-class function for the classical setting). Unlike the classical case, in this general setting the notion of inner partitions into a number of distinct cases: (i) strictly inner (isometric multiplier) (ii) McCT (McCullough-Trent) inner (partially isometric multiplier), (iii) Bergman inner (contractive multiplier which is isometric when restricted to constants). For appropriately restricted pairs of input/output vectorial weighted Hardy–Fock spaces, analogs of the classical connections with dissipative/conservative linear input/state/output multidimensional linear systems, kernel decompositions, as well as corresponding generalized orthogonal decompositions of the ambient weighted Hardy–Fock space as a sum of a backward and a forward-shift-invariant subspace, are explored. These results are fundamental for the work of the succeeding Chapters.
Chapter 6 deals with two flavors of Beurling–Lax representations which have been studied in the context of Bergman spaces: (i) a Beurling–Lax-type representation based on the shift-invariant subspace being generated by a so-called quasi-wandering subspace, and (ii) a Beurling–Lax representation based on the shift-invariant subspace being generated (but non-orthogonally) by its canonically defined wandering subspace.
The dynamics of the fragmentation equation with size diffusion is investigated when the size ranges in $(0,\infty)$. The associated linear operator involves three terms and can be seen as a nonlocal perturbation of a Schrödinger operator. A Miyadera perturbation argument is used to prove that it is the generator of a positive, analytic semigroup on a weighted $L_1$-space. Moreover, if the overall fragmentation rate does not vanish at infinity, then there is a unique stationary solution with given mass. Assuming further that the overall fragmentation rate diverges to infinity for large sizes implies the immediate compactness of the semigroup and that it eventually stabilizes at an exponential rate to a one-dimensional projection carrying the information of the mass of the initial value.
Chapter 7 obtains a Beurling–Lax representation for an isometrically included forward-shift-invariant subspace of a weighted Hardy–Fock space which involves a whole family of Bergman-inner-like multipliers (rather than a single inner multiplier) which leads to an orthogonal decomposition of the forward-shift-invariant subspace. The Bergman-inner family can be viewed as the transfer-function family for a time-varying noncommutative, multidimensional weighted-conservative input/state/output linear system, and can be viewed as a time-varying isometric multiplier from a time-varying unweighted Hardy–Fock space to the given weighted Hardy–Fock space.
Chapter 8 presents a de Branges–Rovnyak-type model theory for a given operator-tuple in an appropriate class (indexed by an admissible weight ?) of hypercontractive operator tuples. Application of results from Chapter 4 leads to a shift-type model-operator-tuple acting on a backward-shift-invariant contractively included subspace of a ?-weighted Hardy–Fock space. In the nicest case one can use results of Chapter 5 to define a characteristic operator function from which one can recover in the model the original ?-hypercontractive operator tuple up to unitary equivalence. A particular instance of this nice situation is the case where the ?-hypercontractive operator tuple is pure, or equivalently, when the backward-shift-invariant subspace is isometrically included in the ambient weighted Hardy–Fock space. In this case, there is also an alternative model theory based on a characteristic Bergman-inner family which makes use of results from Chapter 7. In this case, there is also a Bergman-inner characteristic function which is a partial unitary invariant and relates to the work on the Bergman shift from the 1990s.