To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given an integer $g>2$, we state necessary and sufficient conditions for a finite Abelian group to act as a group of automorphisms of some compact nonorientable Riemann surface of genus g. This result provides a new method to obtain the symmetric cross-cap number of Abelian groups. We also compute the least symmetric cross-cap number of Abelian groups of a given order and solve the maximum order problem for Abelian groups acting on nonorientable Riemann surfaces.
We show that the energy norm of weak solutions to Vlasov equation coupled with a shear thickening fluid on the whole space has a decay rate the energy norm $E(t) \leq {C}/{(1+t)^{\alpha }}, \forall t \geq 0$ for $\alpha \in (0,3/2)$.
This paper obtains new characterizations of weighted Hardy spaces and certain weighted $BMO$ type spaces via the boundedness of variation operators associated with approximate identities and their commutators, respectively.
We prove a general principle satisfied by weakly precompact sets of Lipschitz-free spaces. By this principle, certain infinite dimensional phenomena in Lipschitz-free spaces over general metric spaces may be reduced to the same phenomena in free spaces over their compact subsets. As easy consequences we derive several new and some known results. The main new results are: $\mathcal {F}(X)$ is weakly sequentially complete for every superreflexive Banach space $X$, and $\mathcal {F}(M)$ has the Schur property and the approximation property for every scattered complete metric space $M$.
We prove that a finite index regular inclusion of $II_1$-factors with commutative first relative commutant is always a crossed product subfactor with respect to a minimal action of a biconnected weak Kac algebra. Prior to this, we prove that every finite index inclusion of $II_1$-factors which is of depth 2 and has simple first relative commutant (respectively, is regular and has commutative or simple first relative commutant) admits a two-sided Pimsner–Popa basis (respectively, a unitary orthonormal basis).
The aim of the paper is to explore non-local reverse-space matrix non-linear Schrödinger equations and their inverse scattering transforms. Riemann–Hilbert problems are formulated to analyse the inverse scattering problems, and the Sokhotski–Plemelj formula is used to determine Gelfand–Levitan–Marchenko-type integral equations for generalised matrix Jost solutions. Soliton solutions are constructed through the reflectionless transforms associated with poles of the Riemann–Hilbert problems.
where $f$ satisfies a uniform VMO condition with respect to the $x$-variable and is continuous with respect to ${\bf u}$. The growth condition with respect to the gradient variable is assumed a general one.
We explain how to develop the twisted doubling integrals for Brylinski–Deligne extensions of connected classical groups. This gives a family of global integrals which represent Euler products for this class of nonlinear extensions.
parametrized by $(\varepsilon,\,a)$ with $\varepsilon \approx 0$ and $a$ in an open subset $A$ of $ {\mathbb {R}}^{\alpha },$ and we study the Dulac time $\mathcal {T}(s;\varepsilon,\,a)$ of one of its hyperbolic sectors. We prove (theorem 1.1) that the derivative $\partial _s\mathcal {T}(s;\varepsilon,\,a)$ tends to $-\infty$ as $(s,\,\varepsilon )\to (0^{+},\,0)$ uniformly on compact subsets of $A.$ This result is addressed to study the bifurcation of critical periods in the Loud's family of quadratic centres. In this regard we show (theorem 1.2) that no bifurcation occurs from certain semi-hyperbolic polycycles.
A classical theorem of Frucht states that any finite group appears as the automorphism group of a finite graph. In the quantum setting, the problem is to understand the structure of the compact quantum groups which can appear as quantum automorphism groups of finite graphs. We discuss here this question, notably with a number of negative results.
Let $\mathrm{AP}_k=\{a,a+d,\ldots,a+(k-1)d\}$ be an arithmetic progression. For $\varepsilon>0$ we call a set $\mathrm{AP}_k(\varepsilon)=\{x_0,\ldots,x_{k-1}\}$ an $\varepsilon$-approximate arithmetic progression if for some a and d, $|x_i-(a+id)|<\varepsilon d$ holds for all $i\in\{0,1\ldots,k-1\}$. Complementing earlier results of Dumitrescu (2011, J. Comput. Geom.2(1) 16–29), in this paper we study numerical aspects of Van der Waerden, Szemerédi and Furstenberg–Katznelson like results in which arithmetic progressions and their higher dimensional extensions are replaced by their $\varepsilon$-approximation.
In this paper, we concern with a backward problem for a nonlinear time fractional wave equation in a bounded domain. By applying the properties of Mittag-Leffler functions and the method of eigenvalue expansion, we establish some results about the existence and uniqueness of the mild solutions of the proposed problem based on the compact technique. Due to the ill-posedness of backward problem in the sense of Hadamard, a general filter regularization method is utilized to approximate the solution and further we prove the convergence rate for the regularized solutions.
A theory of infinite spanning sets and bases is developed for the first-order flex space of an infinite bar-joint framework, together with space group symmetric versions for a crystallographic bar-joint framework ${{\mathcal {C}}}$. The existence of a crystal flex basis for ${{\mathcal {C}}}$ is shown to be closely related to the spectral analysis of the rigid unit mode (RUM) spectrum of ${{\mathcal {C}}}$ and an associated geometric flex spectrum. Additionally, infinite spanning sets and bases are computed for a range of fundamental crystallographic bar-joint frameworks, including the honeycomb (graphene) framework, the octahedron (perovskite) framework and the 2D and 3D kagome frameworks.
We show that some results of L. Makar-Limanov, P. Malcolmson and Z. Reichstein on the existence of free-associative algebras are valid in the more general context of varieties of algebras.
In this work we derive by $\Gamma$-convergence techniques a model for brittle fracture linearly elastic plates. Precisely, we start from a brittle linearly elastic thin film with positive thickness $\rho$ and study the limit as $\rho$ tends to $0$. The analysis is performed with no a priori restrictions on the admissible displacements and on the geometry of the fracture set. The limit model is characterized by a Kirchhoff-Love type of structure.
In this paper, we give a generalization and improvement of the Pavlović result on the characterization of continuously differentiable functions in the Bloch space on the unit ball in $\mathbb {R}^{m}$. Then, we derive a Holland–Walsh type theorem for analytic normal mappings on the unit disk.