To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents the current state of mathematical modelling of the electrochemical behaviour of lithium-ion batteries (LIBs) as they are charged and discharged. It reviews the models developed by Newman and co-workers, both in the cases of dilute and moderately concentrated electrolytes and indicates the modelling assumptions required for their development. Particular attention is paid to the interface conditions imposed between the electrolyte and the active electrode material; necessary conditions are derived for one of these, the Butler–Volmer relation, in order to ensure physically realistic solutions. Insight into the origin of the differences between various models found in the literature is revealed by considering formulations obtained by using different measures of the electric potential. Materials commonly used for electrodes in LIBs are considered and the various mathematical models used to describe lithium transport in them discussed. The problem of upscaling from models of behaviour at the single electrode particle scale to the cell scale is addressed using homogenisation techniques resulting in the pseudo-2D model commonly used to describe charge transport and discharge behaviour in lithium-ion cells. Numerical solution to this model is discussed and illustrative results for a common device are computed.
The self-interaction force of dislocation curves in metals depends on the local arrangement of the atoms and on the non-local interaction between dislocation curve segments. While these non-local segment–segment interactions can be accurately described by linear elasticity when the segments are further apart than the atomic scale of size $\varepsilon$, this model breaks down and blows up when the segments are $O(\varepsilon)$ apart. To separate the non-local interactions from the local contribution, various models depending on $\varepsilon$ have been constructed to account for the non-local term. However, there are no quantitative comparisons available between these models. This paper makes such comparisons possible by expanding the self-interaction force in these models in $\varepsilon$ beyond the O(1)-term. Our derivation of these expansions relies on asymptotic analysis. The practical use of these expansions is demonstrated by developing numerical schemes for them, and by – for the first time – bounding the corresponding discretisation error.
We prove and generalise a conjecture in [MPP4] about the asymptotics of $\frac{1}{\sqrt{n!}} f^{\lambda/\mu}$, where $f^{\lambda/\mu}$ is the number of standard Young tableaux of skew shape $\lambda/\mu$ which have stable limit shape under the $1/\sqrt{n}$ scaling. The proof is based on the variational principle on the partition function of certain weighted lozenge tilings.
In the early 1980s, Johnson defined a homomorphism $\mathcal {I}_{g}^1\to \bigwedge ^3 H_1\left (S_{g},\mathbb {Z}\right )$, where $\mathcal {I}_{g}^1$ is the Torelli group of a closed, connected, and oriented surface of genus g with a boundary component and $S_g$ is the corresponding surface without a boundary component. This is known as the Johnson homomorphism.
We study the map induced by the Johnson homomorphism on rational homology groups and apply it to abelian cycles determined by disjoint bounding-pair maps, in order to compute a large quotient of $H_n\left (\mathcal {I}_{g}^1,\mathbb {Q}\right )$ in the stable range. This also implies an analogous result for the stable rational homology of the Torelli group $\mathcal {I}_{g,1}$ of a surface with a marked point instead of a boundary component. Further, we investigate how much of the image of this map is generated by images of such cycles and use this to prove that in the pointed case, they generate a proper subrepresentation of $H_n\left (\mathcal {I}_{g,1}\right )$ for $n\ge 2$ and g large enough.
We prove the injectivity of Oda-type restriction maps for the cohomology of noncompact congruence quotients of symmetric spaces. This includes results for restriction between (1) congruence real hyperbolic manifolds, (2) congruence complex hyperbolic manifolds, and (3) orthogonal Shimura varieties. These results generalize results for compact congruence quotients by Bergeron and Clozel [Quelques conséquences des travaux d’Arthur pour le spectre et la topologie des variétés hyperboliques, Invent. Math.192 (2013), 505–532] and Venkataramana [Cohomology of compact locally symmetric spaces, Compos. Math.125 (2001), 221–253]. The proofs combine techniques of mixed Hodge theory and methods involving automorphic forms.
We present a single, connected tile which can tile the plane but only nonperiodically. The tile is hexagonal with edge markings, which impose simple rules as to how adjacent tiles are allowed to meet across edges. The first of these rules is a standard matching rule, that certain decorations match across edges. The second condition is a new type of matching rule, which allows tiles to meet only when certain decorations in a particular orientation are given the opposite charge. This forces the tiles to form a hierarchy of triangles, following a central idea of the Socolar–Taylor tilings. However, the new edge-to-edge orientational matching rule forces this structure in a very different way, which allows for a surprisingly simple proof of aperiodicity. We show that the hull of all tilings satisfying our rules is uniquely ergodic and that almost all tilings in the hull belong to a minimal core of tilings generated by substitution. Identifying tilings which are charge-flips of each other, these tilings are shown to have pure point dynamical spectrum and a regular model set structure.
While in theory systems with traffic intensity rho > 1 blow up, in reality they are stabilized by abandonments. We study limiting results for many-server systems with abandonments.
We introduces some more general processing networks and the maximum pressure policy, which uses local information for decentralized control of the network. Maximum pressure policies can guarantee the stability of MCQN as well as of more general processing networks, under some simple structure conditions, whenever traffic intensity rho < 1.
We present the ingenious scheme devised by Loynes to show that G/G/1 with stationary arrival and service processes is stable when the traffic intensity rho < 1, and transient if rho > 1. Under the stronger assumption that interarrivals and services are i.i.d., we explore the connection of the GI/GI/1 queue with the general random walk and obtain an insightful upper bound on waiting time.
We discuss the case in which arrivals, service, and routing are all memoryless, which is the classic Jackson network, and some related systems. For all of these, the stationary distribution is obtainable and is of product form.
Because time is not scaled, limiting results for many-server scaling retains dependence on the service time distribution, as we saw in the scaling of M/GI/1. We extend these infinite server results to general time-dependent arrival streams.
We discuss the classic Jackson network with general i.i.d. interarrivals and service times, the generalized Jackson network. Like the GI/GI/1 system, the generalized Jackson network cannot be analyzed in detail, and we discuss fluid and diffusion approximations to the network process.
We consider Brownian problems of scheduling and admission control, where we force congestion to be kept at the least costly nodes, and use admission control to regulate congestion.
Following Ryan and Tornaría, we prove that moduli of congruences of Hecke eigenvalues, between Saito–Kurokawa lifts and non-lifts (certain Siegel modular forms of genus 2), occur (squared) in denominators of central spinor L-values (divided by twists) for the non-lifts. This is conditional on Böcherer’s conjecture and its analogues and is viewed in the context of recent work of Furusawa, Morimoto and others. It requires a congruence of Fourier coefficients, which follows from a uniqueness assumption or can be proved in examples. We explain these factors in denominators via a close examination of the Bloch–Kato conjecture.
We define fluid limits and show that stability of the fluid limits implies stability of the stochastic queueing system. This enables us to study stability of MCQN under various policies.