To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\operatorname {\mathrm {{\rm G}}}(n)$ be equal to either $\operatorname {\mathrm {{\rm PO}}}(n,1),\operatorname {\mathrm {{\rm PU}}}(n,1)$ or $\operatorname {\mathrm {\textrm {PSp}}}(n,1)$ and let $\Gamma \leq \operatorname {\mathrm {{\rm G}}}(n)$ be a uniform lattice. Denote by $\operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}}$ the hyperbolic space associated to $\operatorname {\mathrm {{\rm G}}}(n)$, where $\operatorname {\mathrm {{\rm K}}}$ is a division algebra over the reals of dimension d. Assume $d(n-1) \geq 2$.
In this article we generalise natural maps to measurable cocycles. Given a standard Borel probability $\Gamma $-space $(X,\mu _X)$, we assume that a measurable cocycle $\sigma :\Gamma \times X \rightarrow \operatorname {\mathrm {{\rm G}}}(m)$ admits an essentially unique boundary map $\phi :\partial _\infty \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \times X \rightarrow \partial _\infty \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$ whose slices $\phi _x:\operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \rightarrow \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$ are atomless for almost every $x \in X$. Then there exists a $\sigma $-equivariant measurable map $F: \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \times X \rightarrow \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$ whose slices $F_x:\operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}} \rightarrow \operatorname {\mathrm {\mathbb {H}^m_{{\rm K}}}}$ are differentiable for almost every $x \in X$ and such that $\operatorname {\mathrm {\textrm {Jac}}}_a F_x \leq 1$ for every $a \in \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}}$ and almost every $x \in X$. This allows us to define the natural volume $\operatorname {\mathrm {\textrm {NV}}}(\sigma )$ of the cocycle $\sigma $. This number satisfies the inequality $\operatorname {\mathrm {\textrm {NV}}}(\sigma ) \leq \operatorname {\mathrm {\textrm {Vol}}}(\Gamma \backslash \operatorname {\mathrm {\mathbb {H}^n_{{\rm K}}}})$. Additionally, the equality holds if and only if $\sigma $ is cohomologous to the cocycle induced by the standard lattice embedding $i:\Gamma \rightarrow \operatorname {\mathrm {{\rm G}}}(n) \leq \operatorname {\mathrm {{\rm G}}}(m)$, modulo possibly a compact subgroup of $\operatorname {\mathrm {{\rm G}}}(m)$ when $m>n$.
Given a continuous map $f:M \rightarrow N$ between compact hyperbolic manifolds, we also obtain an adaptation of the mapping degree theorem to this context.
For a prime number p and a free profinite group S on the basis X, let $S_{\left (n,p\right )}$, $n=1,2,\dotsc ,$ be the p-Zassenhaus filtration of S. For $p>n$, we give a word-combinatorial description of the cohomology group $H^2\left (S/S_{\left (n,p\right )},\mathbb {Z}/p\right )$ in terms of the shuffle algebra on X. We give a natural linear basis for this cohomology group, which is constructed by means of unitriangular representations arising from Lyndon words.
where $L(v)=-\textrm {div}(M(x)\nabla v)$ is a linear operator, $p\in (2,2^{*}]$ and $\lambda$ and $m$ sufficiently large. Then their asymptotical limit as $m\to +\infty$ is investigated showing different behaviours.
We expand the critical point for site percolation on the d-dimensional hypercubic lattice in terms of inverse powers of 2d, and we obtain the first three terms rigorously. This is achieved using the lace expansion.
In this paper, we investigate the existence and nonexistence of results for a class of Hamiltonian-Choquard-type elliptic systems. We show the nonexistence of classical nontrivial solutions for the problem
\[ \begin{cases} -\Delta u + u= ( I_{\alpha} \ast |v|^{p} )v^{p-1} \text{ in } \mathbb{R}^{N},\\ -\Delta v + v= ( I_{\beta} \ast |u|^{q} )u^{q-1} \text{ in } \mathbb{R}^{N}, \\ u(x),v(x) \rightarrow 0 \text{ when } |x|\rightarrow \infty, \end{cases} \]
when $(N+\alpha )/p + (N+\beta )/q \leq 2(N-2)$ (if $N\geq 3$) and $(N+\alpha )/p + (N+\beta )/q \geq 2N$ (if $N=2$), where $I_{\alpha }$ and $I_{\beta }$ denote the Riesz potential. Second, via variational methods and the generalized Nehari manifold, we show the existence of a nontrivial non-negative solution or a Nehari-type ground state solution for the problem
\[ \begin{cases} -\Delta u + u= (I_{\alpha} \ast |v|^{\frac{\alpha}{2}+1})|v|^{\frac{\alpha}{2}-1}v + g(v) \hbox{ in } \mathbb{R}^{2},\\ - \Delta v + v= (I_{\beta} \ast |u|^{\frac{\beta}{2}+1})|u|^{\frac{\beta}{2}-1}u + f(u), \hbox{ in } \mathbb{R}^{2},\\ u,v \in H^{1}(\mathbb{R}^{2}), \end{cases} \]
where $\alpha ,\,\beta \in (0,\,2)$ and $f,\,g$ have exponential critical growth in the Trudinger–Moser sense.
We construct the complete set of orders of growth and define on it the generalized entropy of a dynamical system. With this object, we provide a framework wherein we can study the separation of orbits of a map beyond the scope of exponential growth. We show that this construction is particularly useful for studying families of dynamical systems with vanishing entropy. Moreover, we see that the space of orders of growth in which orbits are separated is wilder than expected. We achieve this with different types of examples.
Motivated by analogous questions in the setting of Steiner triple systems and Latin squares, Nenadov, Sudakov and Wagner [Completion and deficiency problems, Journal of Combinatorial Theory Series B, 2020] recently introduced the notion of graph deficiency. Given a global spanning property $\mathcal P$ and a graph $G$, the deficiency $\text{def}(G)$ of the graph $G$ with respect to the property $\mathcal P$ is the smallest non-negative integer t such that the join $G*K_t$ has property $\mathcal P$. In particular, Nenadov, Sudakov and Wagner raised the question of determining how many edges an n-vertex graph $G$ needs to ensure $G*K_t$ contains a $K_r$-factor (for any fixed $r\geq 3$). In this paper, we resolve their problem fully. We also give an analogous result that forces $G*K_t$ to contain any fixed bipartite $(n+t)$-vertex graph of bounded degree and small bandwidth.
We prove some qualitative results about the p-adic Jacquet–Langlands correspondence defined by Scholze, in the $\operatorname {\mathrm {GL}}_2(\mathbb{Q}_p )$ residually reducible case, using a vanishing theorem proved by Judith Ludwig. In particular, we show that in the cases under consideration, the global p-adic Jacquet–Langlands correspondence can also deal with automorphic forms with principal series representations at p in a nontrivial way, unlike its classical counterpart.
Kostochka and Thomason independently showed that any graph with average degree $\Omega(r\sqrt{\log r})$ contains a $K_r$ minor. In particular, any graph with chromatic number $\Omega(r\sqrt{\log r})$ contains a $K_r$ minor, a partial result towards Hadwiger’s famous conjecture. In this paper, we investigate analogues of these results in the directed setting. There are several ways to define a minor in a digraph. One natural way is as follows. A strong$\overrightarrow{K}_{\!\!r}$minor is a digraph whose vertex set is partitioned into r parts such that each part induces a strongly connected subdigraph, and there is at least one edge in each direction between any two distinct parts. We investigate bounds on the dichromatic number and minimum out-degree of a digraph that force the existence of strong $\overrightarrow{K}_{\!\!r}$ minors as subdigraphs. In particular, we show that any tournament with dichromatic number at least 2r contains a strong $\overrightarrow{K}_{\!\!r}$ minor, and any tournament with minimum out-degree $\Omega(r\sqrt{\log r})$ also contains a strong $\overrightarrow{K}_{\!\!r}$ minor. The latter result is tight up to the implied constant and may be viewed as a strong-minor analogue to the classical result of Kostochka and Thomason. Lastly, we show that there is no function $f\;:\;\mathbb{N} \rightarrow \mathbb{N}$ such that any digraph with minimum out-degree at least f(r) contains a strong $\overrightarrow{K}_{\!\!r}$ minor, but such a function exists when considering dichromatic number.
In this short article, we will be principally investigating two classes of modules over any given group ring – the class of Gorenstein projectives and the class of Benson's cofibrants. We begin by studying various properties of these two classes and studying some of these properties comparatively against each other. There is a conjecture made by Fotini Dembegioti and Olympia Talelli that these two classes should coincide over the integral group ring for any group. We make this conjecture over group rings over commutative rings of finite global dimension and prove it for some classes of groups while also proving other related results involving the two classes of modules mentioned.
In this paper, we study some properties of the generalized Fokker–Planck equation induced by the time-changed fractional Ornstein–Uhlenbeck process. First of all, we exploit some sufficient conditions to show that a mild solution of such equation is actually a classical solution. Then, we discuss an isolation result for mild solutions. Finally, we prove the weak maximum principle for strong solutions of the aforementioned equation and then a uniqueness result.
Let G be a finitely generated group that can be written as an extension
$$ \begin{align*} 1 \longrightarrow K \stackrel{i}{\longrightarrow} G \stackrel{f}{\longrightarrow} \Gamma \longrightarrow 1 \end{align*} $$
where K is a finitely generated group. By a study of the Bieri–Neumann–Strebel (BNS) invariants we prove that if $b_1(G)> b_1(\Gamma ) > 0$, then G algebraically fibres; that is, admits an epimorphism to $\Bbb {Z}$ with finitely generated kernel. An interesting case of this occurrence is when G is the fundamental group of a surface bundle over a surface $F \hookrightarrow X \rightarrow B$ with Albanese dimension$a(X) = 2$. As an application, we show that if X has virtual Albanese dimension $va(X) = 2$ and base and fibre have genus greater that $1$, G is noncoherent. This answers for a broad class of bundles a question of J. Hillman ([9, Question 11(4)]). Finally, we show that there exist surface bundles over a surface whose BNS invariants have a structure that differs from that of Kodaira fibrations, determined by T. Delzant.
When a liquid fills the semi-infinite space between two concentric cylinders which rotate at different steady speeds, how about the shape of the free surface on top of the fluid? The different fluids will lead to a different shape. For the Newtonian fluid, the meniscus descends due to the centrifugal forces. However, for the certain non-Newtonian fluid, the meniscus climbs the internal cylinder. We want to explain the above phenomenon by a rigorous mathematical analysis theory. In the present paper, as the first step, we focus on the Newtonian fluid. This is a steady free boundary problem. We aim to establish the well-posedness of this problem. Furthermore, we prove the convergence of the formal perturbation series obtained by Joseph and Fosdick in Arch. Ration. Mech. Anal. 49 (1973), 321–380.
In this paper, we study a dissipative systems modelling electrohydrodynamics in incompressible viscous fluids. The system consists of the Navier–Stokes equations coupled with a classical Poisson–Nernst–Planck equations. In the three-dimensional case, we establish a global regularity criteria in terms of the middle eigenvalue of the strain tensor in the framework of the anisotropic Lorentz spaces for local smooth solution. The proof relies on the identity for entropy growth introduced by Miller in the Arch. Ration. Mech. Anal. [16].
We study the invariance of KMS states on graph $C^{\ast }$-algebras coming from strongly connected and circulant graphs under the classical and quantum symmetry of the graphs. We show that the unique KMS state for strongly connected graphs is invariant under the quantum automorphism group of the graph. For circulant graphs, it is shown that the action of classical and quantum automorphism groups preserves only one of the KMS states occurring at the critical inverse temperature. We also give an example of a graph $C^{\ast }$-algebra having more than one KMS state such that all of them are invariant under the action of classical automorphism group of the graph, but there is a unique KMS state which is invariant under the action of quantum automorphism group of the graph.
We show that the K-moduli spaces of log Fano pairs $\left(\mathbb {P}^1\times \mathbb {P}^1, cC\right)$, where C is a $(4,4)$ curve and their wall crossings coincide with the VGIT quotients of $(2,4)$, complete intersection curves in $\mathbb {P}^3$. This, together with recent results by Laza and O’Grady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$ curves on $\mathbb {P}^1\times \mathbb {P}^1$ and the Baily–Borel compactification of moduli of quartic hyperelliptic K3 surfaces.