To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We provide a new formalism of de Rham–Witt complexes in the logarithmic setting. This construction generalises a result of Bhatt–Lurie–Mathew and agrees with those of Hyodo–Kato and Matsuue for log-smooth schemes of log-Cartier type. We then use our construction to study the monodromy action and slopes of Frobenius on log crystalline cohomology.
In this study, we investigate the intial value problem (IVP) for a time-fractional fourth-order equation with nonlinear source terms. More specifically, we consider the time-fractional biharmonic with exponential nonlinearity and the time-fractional Cahn–Hilliard equation. By using the Fourier transform concept, the generalized formula for the mild solution as well as the smoothing effects of resolvent operators are proved. For the IVP associated with the first one, by using the Orlicz space with the function $\Xi (z)={\textrm {e}}^{|z|^{p}}-1$ and some embeddings between it and the usual Lebesgue spaces, we prove that the solution is a global-in-time solution or it shall blow up in a finite time if the initial value is regular. In the case of singular initial data, the local-in-time/global-in-time existence and uniqueness are derived. Also, the regularity of the mild solution is investigated. For the IVP associated with the second one, some modifications to the generalized formula are made to deal with the nonlinear term. We also establish some important estimates for the derivatives of resolvent operators, they are the basis for using the Picard sequence to prove the local-in-time existence of the solution.
We prove a new generalization of Davenport's Fourier expansion of the infinite series involving the fractional part function over arithmetic functions. A new Mellin transform related to the Riemann zeta function is also established.
We obtain a polynomial upper bound on the mixing time $T_{CHR}(\epsilon)$ of the coordinate Hit-and-Run (CHR) random walk on an $n-$dimensional convex body, where $T_{CHR}(\epsilon)$ is the number of steps needed to reach within $\epsilon$ of the uniform distribution with respect to the total variation distance, starting from a warm start (i.e., a distribution which has a density with respect to the uniform distribution on the convex body that is bounded above by a constant). Our upper bound is polynomial in n, R and $\frac{1}{\epsilon}$, where we assume that the convex body contains the unit $\Vert\cdot\Vert_\infty$-unit ball $B_\infty$ and is contained in its R-dilation $R\cdot B_\infty$. Whether CHR has a polynomial mixing time has been an open question.
We consider patterns formed in a two-dimensional thin film on a planar substrate with a Derjaguin disjoining pressure and periodic wettability stripes. We rigorously clarify some of the results obtained numerically by Honisch et al. [Langmuir 31: 10618–10631, 2015] and embed them in the general theory of thin-film equations. For the case of constant wettability, we elucidate the change in the global structure of branches of steady-state solutions as the average film thickness and the surface tension are varied. Specifically we find, by using methods of local bifurcation theory and the continuation software package AUTO, both nucleation and metastable regimes. We discuss admissible forms of spatially non-homogeneous disjoining pressure, arguing for a form that differs from the one used by Honisch et al., and study the dependence of the steady-state solutions on the wettability contrast in that case.