To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper is concerned with a prey–predator model with population flux by attractive transition. Our previous paper (Oeda and Kuto, 2018, Nonlinear Anal. RWA, 44, 589–615) obtained a bifurcation branch (connected set) of coexistence steady states which connects two semitrivial solutions. In Oeda and Kuto (2018, Nonlinear Anal. RWA, 44, 589–615), we also showed that any positive steady-state approaches a positive solution of either of two limiting systems, and moreover, one of the limiting systems is an equal diffusive competition model. This paper obtains the bifurcation structure of positive solutions to the other limiting system. Moreover, this paper implies that the global bifurcation branch of coexistence states consists of two parts, one of which is a simple curve running in a tubular domain near the set of positive solutions to the equal diffusive competition model, the other of which is a connected set characterized by positive solutions to the other limiting system.
By assuming that the Kirchhoff term has $K$ degeneracy points and other appropriated conditions, we have proved the existence of at least $K$ positive solutions other than those obtained in Santos Júnior and Siciliano [Positive solutions for a Kirchhoff problem with vanishing nonlocal term, J. Differ. Equ. 265 (2018), 2034–2043], which also have ordered $H_{0}^{1}(\Omega )$-norms. A concentration phenomena of these solutions is verified as a parameter related to the area of a region under the graph of the reaction term goes to zero.
We consider the relative Bruce–Roberts number $\mu _{\textrm {BR}}^{-}(f,\,X)$ of a function on an isolated hypersurface singularity $(X,\,0)$. We show that $\mu _{\textrm {BR}}^{-}(f,\,X)$ is equal to the sum of the Milnor number of the fibre $\mu (f^{-1}(0)\cap X,\,0)$ plus the difference $\mu (X,\,0)-\tau (X,\,0)$ between the Milnor and the Tjurina numbers of $(X,\,0)$. As an application, we show that the usual Bruce–Roberts number $\mu _{\textrm {BR}}(f,\,X)$ is equal to $\mu (f)+\mu _{\textrm {BR}}^{-}(f,\,X)$. We also deduce that the relative logarithmic characteristic variety $LC(X)^{-}$, obtained from the logarithmic characteristic variety $LC(X)$ by eliminating the component corresponding to the complement of $X$ in the ambient space, is Cohen–Macaulay.
It is well known that the height profile of a critical conditioned Galton–Watson tree with finite offspring variance converges, after a suitable normalisation, to the local time of a standard Brownian excursion. In this work, we study the distance profile, defined as the profile of all distances between pairs of vertices. We show that after a proper rescaling the distance profile converges to a continuous random function that can be described as the density of distances between random points in the Brownian continuum random tree. We show that this limiting function a.s. is Hölder continuous of any order $\alpha<1$, and that it is a.e. differentiable. We note that it cannot be differentiable at 0, but leave as open questions whether it is Lipschitz, and whether it is continuously differentiable on the half-line $(0,\infty)$. The distance profile is naturally defined also for unrooted trees contrary to the height profile that is designed for rooted trees. This is used in our proof, and we prove the corresponding convergence result for the distance profile of random unrooted simply generated trees. As a minor purpose of the present work, we also formalize the notion of unrooted simply generated trees and include some simple results relating them to rooted simply generated trees, which might be of independent interest.
Let $c_{kl} \in W^{1,\infty }(\Omega , \mathbb{C})$ for all $k,l \in \{1, \ldots , d\};$ and $\Omega \subset \mathbb{R}^{d}$ be open with uniformly $C^{2}$ boundary. We consider the divergence form operator $A_p = - \sum \nolimits _{k,l=1}^{d} \partial _l (c_{kl} \partial _k)$ in $L_p(\Omega )$ when the coefficient matrix satisfies $(C(x) \xi , \xi ) \in \Sigma _\theta$ for all $x \in \Omega$ and $\xi \in \mathbb{C}^{d}$, where $\Sigma _\theta$ be the sector with vertex 0 and semi-angle $\theta$ in the complex plane. We show that a sectorial estimate holds for $A_p$ for all $p$ in a suitable range. We then apply these estimates to prove that the closure of $-A_p$ generates a holomorphic semigroup under further assumptions on the coefficients. The contractivity and consistency properties of these holomorphic semigroups are also considered.
The paper develops a general theory of orderability of quandles with a focus on link quandles of tame links and gives some general constructions of orderable quandles. We prove that knot quandles of many fibred prime knots are right-orderable, whereas link quandles of most non-trivial torus links are not right-orderable. As a consequence, we deduce that the knot quandle of the trefoil is neither left nor right-orderable. Further, it is proved that link quandles of certain non-trivial positive (or negative) links are not bi-orderable, which includes some alternating knots of prime determinant and alternating Montesinos links. The paper also explores interconnections between orderability of quandles and that of their enveloping groups. The results establish that orderability of link quandles behaves quite differently than that of corresponding link groups.
We establish a kind of ‘degree $0$ Freudenthal ${\mathbb {G}_m}$-suspension theorem’ in motivic homotopy theory. From this we deduce results about the conservativity of the $\mathbb P^1$-stabilization functor.
In order to establish these results, we show how to compute certain pullbacks in the cohomology of a strictly homotopy-invariant sheaf in terms of the Rost–Schmid complex. This establishes the main conjecture of [2], which easily implies the aforementioned results.
Silicon is produced in submerged arc furnaces which are heated by electric currents passing through the furnace. It is important to understand the distribution of heating within the furnace in order to accurately model the silicon production process, yet many existing studies neglect aspects of this current flow. In the present paper, we formulate a model that couples the electrical current to thermal, material flow and chemical processes in the furnace. We then exploit disparate timescales to homogenise the model over the timescale of the alternating current, deriving averaged equations for the slow evolution of the system. Our numerical simulations predict a minimum applied current that is required in order to obtain steady-state solutions of the homogenised model and show that for high enough applied currents, two spatially heterogeneous steady-state solutions exist, with distinct crater sizes. We show that the system evolves to the steady state with a larger crater radius and explain this behaviour in terms of the overall power balance typically found within a furnace. We find that the industrial practice of stoking furnaces increases the overall rate of material consumption in the furnace, thereby improving the efficiency of silicon production.
This paper is concerned with spreading phenomena of the classical two-species Lotka-Volterra reaction-diffusion system in the weak competition case. More precisely, some new sufficient conditions on the linear or nonlinear speed selection of the minimal wave speed of travelling wave fronts, which connect one half-positive equilibrium and one positive equilibrium, have been given via constructing types of super-sub solutions. Moreover, these conditions for the linear or nonlinear determinacy are quite different from that of the minimal wave speeds of travelling wave fronts connecting other equilibria of Lotka-Volterra competition model. In addition, based on the weighted energy method, we give the global exponential stability of such solutions with large speed $c$. Specially, when the competition rate exerted on one species converges to zero, then for any $c>c_0$, where $c_0$ is the critical speed, the travelling wave front with the speed $c$ is globally exponentially stable.
Existence of non-negative weak solutions is shown for a full curvature thin-film model of a liquid thin film flowing down a vertical fibre. The proof is based on the application of a priori estimates derived for energy-entropy functionals. Long-time behaviour of these weak solutions is analysed and, under some additional constraints for the model parameters and initial values, convergence towards a travelling wave solution is obtained. Numerical studies of energy minimisers and travelling waves are presented to illustrate analytical results.
In this paper, from the property of Killing for structure Jacobi tensor $\mathbb {R}_{\xi }$, we introduce a new notion of cyclic parallelism of structure Jacobi operator$R_{\xi }$ on real hypersurfaces in the complex two-plane Grassmannians. By virtue of geodesic curves, we can give the equivalent relation between cyclic parallelism of $R_{\xi }$ and Killing property of $\mathbb {R}_{\xi }$. Then, we classify all Hopf real hypersurfaces with cyclic parallel structure Jacobi operator in complex two-plane Grassmannians.
where $\lambda$, $\bar {\nu }\in {{\mathfrak R}}$, $s\in (0,1)$, $2^{*}_{s}=({2N}/{N-2s})\,(N>2s)$, $(-\Delta )^{s}$ is the fractional Laplace operator, $\Omega \subset {{\mathfrak R}}^{N}$ is a bounded domain with smooth boundary and $\varphi _{1}$ is the first positive eigenfunction of the fractional Laplace under the condition $u=0$ in ${{\mathfrak R}}^{N}\setminus \Omega$. Under suitable conditions on $\lambda$ and $\bar {\nu }$ and using a Lyapunov-Schmidt reduction method, we prove the fractional version of the Lazer-McKenna conjecture which says that the equation above has infinitely many solutions as $|\bar \nu | \to \infty$ .
Based on the Gale–Ryser theorem [2, 6], for the existence of suitable $(0,1)$-matrices for different partitions of a natural number, we revisit the classical result of Lorentz [4] regarding the characterization of a plane measurable set, in terms of its cross-sections, and extend it to general measure spaces.
In this paper, we study a mathematical model for an infectious disease caused by a virus such as Cholera without lifetime immunity. Due to the different mobility for susceptible, infected human and recovered human hosts, the diffusion coefficients are assumed to be different. The resulting system is governed by a strongly coupled reaction–diffusion system with different diffusion coefficients. Global existence and uniqueness are established under certain assumptions on known data. Moreover, global asymptotic behaviour of the solution is obtained when some parameters satisfy certain conditions. These results extend the existing results in the literature. The main tool used in this paper comes from the delicate theory of elliptic and parabolic equations. Moreover, the energy method and Sobolev embedding are used in deriving a priori estimates. The analysis developed in this paper can be employed to study other epidemic models in biological, ecological and health sciences.
This classic work has been a unique resource for thousands of mathematicians, scientists and engineers since its first appearance in 1902. Never out of print, its continuing value lies in its thorough and exhaustive treatment of special functions of mathematical physics and the analysis of differential equations from which they emerge. The book also is of historical value as it was the first book in English to introduce the then modern methods of complex analysis. This fifth edition preserves the style and content of the original, but it has been supplemented with more recent results and references where appropriate. All the formulas have been checked and many corrections made. A complete bibliographical search has been conducted to present the references in modern form for ease of use. A new foreword by Professor S.J. Patterson sketches the circumstances of the book's genesis and explains the reasons for its longevity. A welcome addition to any mathematician's bookshelf, this will allow a whole new generation to experience the beauty contained in this text.
In this paper, we characterize surjective isometries on certain classes of noncommutative spaces associated with semi-finite von Neumann algebras: the Lorentz spaces $L^{w,1}$, as well as the spaces $L^1+L^\infty$ and $L^1\cap L^\infty$. The technique used in all three cases relies on characterizations of the extreme points of the unit balls of these spaces. Of particular interest is that the representations of isometries obtained in this paper are global representations.