To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a system of reaction–diffusion equations including chemotaxis terms and coming out of the modelling of multiple sclerosis. The global existence of strong solutions to this system in any dimension is proved, and it is also shown that the solution is bounded uniformly in time. Finally, a nonlinear stability result is obtained when the chemotaxis term is not too big. We also perform numerical simulations to show the appearance of Turing patterns when the chemotaxis term is large.
Starting with elementary operator theory and matrix analysis, this book introduces the basic properties of the numerical range and gradually builds up the whole numerical range theory. Over 400 assorted problems, ranging from routine exercises to published research results, give you the chance to put the theory into practice and test your understanding. Interspersed throughout the text are numerous comments and references, allowing you to discover related developments and to pursue areas of interest in the literature. Also included is an appendix on basic convexity properties on the Euclidean space. Targeted at graduate students as well as researchers interested in functional analysis, this book provides a comprehensive coverage of classic and recent works on the numerical range theory. It serves as an accessible entry point into this lively and exciting research area.
A set S of permutations is forcing if for any sequence $\{\Pi_i\}_{i \in \mathbb{N}}$ of permutations where the density $d(\pi,\Pi_i)$ converges to $\frac{1}{|\pi|!}$ for every permutation $\pi \in S$, it holds that $\{\Pi_i\}_{i \in \mathbb{N}}$ is quasirandom. Graham asked whether there exists an integer k such that the set of all permutations of order k is forcing; this has been shown to be true for any $k\ge 4$. In particular, the set of all 24 permutations of order 4 is forcing. We provide the first non-trivial lower bound on the size of a forcing set of permutations: every forcing set of permutations (with arbitrary orders) contains at least four permutations.
We compare the Kummer flat (resp., Kummer étale) cohomology with the flat (resp., étale) cohomology with coefficients in smooth commutative group schemes, finite flat group schemes, and Kato’s logarithmic multiplicative group. We are particularly interested in the case of algebraic tori in the Kummer flat topology. We also make some computations for certain special cases of the base log scheme.
The main purpose of this article is to define a quadratic analogue of the Chern character, the so-called Borel character, that identifies rational higher Grothendieck-Witt groups with a sum of rational Milnor-Witt (MW)-motivic cohomologies and rational motivic cohomologies. We also discuss the notion of ternary laws due to Walter, a quadratic analogue of formal group laws, and compute what we call the additive ternary laws, associated with MW-motivic cohomology. Finally, we provide an application of the Borel character by showing that the Milnor-Witt K-theory of a field F embeds into suitable higher Grothendieck-Witt groups of F modulo explicit torsion.
We prove an analogue of Alon’s spectral gap conjecture for random bipartite, biregular graphs. We use the Ihara–Bass formula to connect the non-backtracking spectrum to that of the adjacency matrix, employing the moment method to show there exists a spectral gap for the non-backtracking matrix. A by-product of our main theorem is that random rectangular zero-one matrices with fixed row and column sums are full rank with high probability. Finally, we illustrate applications to community detection, coding theory, and deterministic matrix completion.
In this study, we are concerned with the asymptotic stability towards a rarefaction wave of the solution to an outflow problem for the Navier-Stokes Korteweg equations of a compressible fluid in the half space. We assume that the space-asymptotic states and the boundary data satisfy some conditions so that the time-asymptotic state of this solution is a rarefaction wave. Then we show that the rarefaction wave is non-linearly stable, as time goes to infinity, provided that the strength of the wave is weak and the initial perturbation is small. The proof is mainly based on $L^{2}$-energy method and some time-decay estimates in $L^{p}$-norm for the smoothed rarefaction wave.
Let $\pi$ be a group satisfying the Farrell–Jones conjecture and assume that $B\pi$ is a 4-dimensional Poincaré duality space. We consider topological, closed, connected manifolds with fundamental group $\pi$ whose canonical map to $B\pi$ has degree 1, and show that two such manifolds are s-cobordant if and only if their equivariant intersection forms are isometric and they have the same Kirby–Siebenmann invariant. If $\pi$ is good in the sense of Freedman, it follows that two such manifolds are homeomorphic if and only if they are homotopy equivalent and have the same Kirby–Siebenmann invariant. This shows rigidity in many cases that lie between aspherical 4-manifolds, where rigidity is expected by Borel’s conjecture, and simply connected manifolds where rigidity is a consequence of Freedman’s classification results.
We propose a conjecture that the Galois representation attached to every Hilbert modular form is noncritical and prove it under certain conditions. Under the same condition we prove Chida, Mok and Park’s conjecture that Fontaine-Mazur L-invariant and Teitelbaum-type L-invariant coincide with each other.
We consider G, a linear algebraic group defined over $\Bbbk $, an algebraically closed field (ACF). By considering $\Bbbk $ as an embedded residue field of an algebraically closed valued field K, we can associate to it a compact G-space $S^\mu _G(\Bbbk )$ consisting of $\mu $-types on G. We show that for each $p_\mu \in S^\mu _G(\Bbbk )$, $\mathrm {Stab}^\mu (p)=\mathrm {Stab}\left (p_\mu \right )$ is a solvable infinite algebraic group when $p_\mu $ is centered at infinity and residually algebraic. Moreover, we give a description of the dimension of $\mathrm {Stab}\left (p_\mu \right )$ in terms of the dimension of p.
We study normal reflection subgroups of complex reflection groups. Our approach leads to a refinement of a theorem of Orlik and Solomon to the effect that the generating function for fixed-space dimension over a reflection group is a product of linear factors involving generalised exponents. Our refinement gives a uniform proof and generalisation of a recent theorem of the second author.
We develop a theory of graph algebras over general fields. This is modelled after the theory developed by Freedman et al. (2007, J. Amer. Math. Soc.20 37–51) for connection matrices, in the study of graph homomorphism functions over real edge weight and positive vertex weight. We introduce connection tensors for graph properties. This notion naturally generalizes the concept of connection matrices. It is shown that counting perfect matchings, and a host of other graph properties naturally defined as Holant problems (edge models), cannot be expressed by graph homomorphism functions with both complex vertex and edge weights (or even from more general fields). Our necessary and sufficient condition in terms of connection tensors is a simple exponential rank bound. It shows that positive semidefiniteness is not needed in the more general setting.
We equate various Euler classes of algebraic vector bundles, including those of [12] and one suggested by M. J. Hopkins, A. Raksit, and J.-P. Serre. We establish integrality results for this Euler class and give formulas for local indices at isolated zeros, both in terms of the six-functors formalism of coherent sheaves and as an explicit recipe in the commutative algebra of Scheja and Storch. As an application, we compute the Euler classes enriched in bilinear forms associated to arithmetic counts of d-planes on complete intersections in $\mathbb P^n$ in terms of topological Euler numbers over $\mathbb {R}$ and $\mathbb {C}$.
The article focuses on the evaluation of convolution sums $${W_k}(n): = \mathop \sum \nolimits_{_{m < {n \over k}}} \sigma (m)\sigma (n - km)$$ involving the sum of divisor function $$\sigma (n)$$ for k =21, 33, and 35. In this article, our aim is to obtain certain Eisenstein series of level 21 and use them to evaluate the convolution sums for level 21. We also make use of the existing Eisenstein series identities for level 33 and 35 in evaluating the convolution sums for level 33 and 35. Most of the convolution sums were evaluated using the theory of modular forms, whereas we have devised a technique which is free from the theory of modular forms. As an application, we determine a formula for the number of representations of a positive integer n by the octonary quadratic form $$(x_1^2 + {x_1}{x_2} + ax_2^2 + x_3^2 + {x_3}{x_4} + ax_4^2) + b(x_5^2 + {x_5}{x_6} + ax_6^2 + x_7^2 + {x_7}{x_8} + ax_8^2)$$, for (a, b)=(1, 7), (1, 11), (2, 3), and (2, 5).
We establish a Wold-type decomposition for isometric and isometric Nica-covariant representations of the odometer semigroup. These generalize the Wold-type decomposition for commuting pairs of isometries due to Popovici and for pairs of doubly commuting isometries due to Słociński.
Moduli spaces of bounded local G-shtukas are a group-theoretic generalisation of the function field analogue of Rapoport and Zink’s moduli spaces of p-divisible groups. In this article we generalise some very prominent concepts in the theory of Rapoport-Zink spaces to our setting. More precisely, we define period spaces, as well as the period map from a moduli space of bounded local G-shtukas to the corresponding period space, and we determine the image of the period map. Furthermore, we define a tower of coverings of the generic fibre of the moduli space, which is equipped with a Hecke action and an action of a suitable automorphism group. Finally, we consider the $\ell $-adic cohomology of these towers.
Les espaces de modules de G-chtoucas locaux bornés sont une généralisation des espaces de modules de groupes p-divisibles de Rapoport-Zink, au cas d’un corps de fonctions local, pour des groupes plus généraux et des copoids pas nécessairement minuscules. Dans cet article nous définissons les espaces de périodes et l’application de périodes associés à un tel espace, et nous calculons son image. Nous étudions la tour au-dessus de la fibre générique de l’espace de modules, équipée d’une action de Hecke ainsi que d’une action d’un groupe d’automorphismes. Enfin, nous définissons la cohomologie $\ell $-adique de ces tours.
In this article we study physical measures for $\operatorname {C}^{1+\alpha }$ partially hyperbolic diffeomorphisms with a mostly expanding center. We show that every diffeomorphism with a mostly expanding center direction exhibits a geometrical-combinatorial structure, which we call skeleton, that determines the number, basins and supports of the physical measures. Furthermore, the skeleton allows us to describe how physical measures bifurcate as the diffeomorphism changes under $C^1$ topology.
Moreover, for each diffeomorphism with a mostly expanding center, there exists a $C^1$ neighbourhood, such that diffeomorphism among a $C^1$ residual subset of this neighbourhood admits finitely many physical measures, whose basins have full volume.
We also show that the physical measures for diffeomorphisms with a mostly expanding center satisfy exponential decay of correlation for any Hölder observes. In particular, we prove that every $C^2$, partially hyperbolic, accessible diffeomorphism with 1-dimensional center and nonvanishing center exponent has exponential decay of correlations for Hölder functions.
In this article, we provide necessary and sufficient conditions for the existence of non-norm-attaining operators in $\mathcal {L}(E, F)$. By using a theorem due to Pfitzner on James boundaries, we show that if there exists a relatively compact set K of $\mathcal {L}(E, F)$ (in the weak operator topology) such that $0$ is an element of its closure (in the weak operator topology) but it is not in its norm-closed convex hull, then we can guarantee the existence of an operator that does not attain its norm. This allows us to provide the following generalisation of results due to Holub and Mujica. If E is a reflexive space, F is an arbitrary Banach space and the pair $(E, F)$ has the (pointwise-)bounded compact approximation property, then the following are equivalent:
(i)$\mathcal {K}(E, F) = \mathcal {L}(E, F)$;
(ii) Every operator from E into F attains its norm;
where $\tau _c$ denotes the topology of compact convergence. We conclude the article by presenting a characterisation of the Schur property in terms of norm-attaining operators.