To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A long-standing conjecture of Erdős and Simonovits asserts that for every rational number $r\in (1,2)$ there exists a bipartite graph H such that $\mathrm{ex}(n,H)=\Theta(n^r)$. So far this conjecture is known to be true only for rationals of form $1+1/k$ and $2-1/k$, for integers $k\geq 2$. In this paper, we add a new form of rationals for which the conjecture is true: $2-2/(2k+1)$, for $k\geq 2$. This in turn also gives an affirmative answer to a question of Pinchasi and Sharir on cube-like graphs. Recently, a version of Erdős and Simonovits$^{\prime}$s conjecture, where one replaces a single graph by a finite family, was confirmed by Bukh and Conlon. They proposed a construction of bipartite graphs which should satisfy Erdős and Simonovits$^{\prime}$s conjecture. Our result can also be viewed as a first step towards verifying Bukh and Conlon$^{\prime}$s conjecture. We also prove an upper bound on the Turán number of theta graphs in an asymmetric setting and employ this result to obtain another new rational exponent for Turán exponents: $r=7/5$.
The paper alluded to in the title contains the following striking result: Let $I$ be the unit interval and $\Delta$ the Cantor set. If $X$ is a quasi Banach space containing no copy of $c_{0}$ which is isomorphic to a closed subspace of a space with a basis and $C(I,\,X)$ is linearly homeomorphic to $C(\Delta ,\, X)$, then $X$ is locally convex, i.e., a Banach space. We will show that Kalton result is sharp by exhibiting non-locally convex quasi Banach spaces $X$ with a basis for which $C(I,\,X)$ and $C(\Delta ,\, X)$ are isomorphic. Our examples are rather specific and actually, in all cases, $X$ is isomorphic to $C(K,\,X)$ if $K$ is a metric compactum of finite covering dimension.
Let C be a smooth projective curve of genus $2$. Following a method by O’Grady, we construct a semismall desingularisation $\tilde {\mathcal {M}}_{Dol}^G$ of the moduli space $\mathcal {M}_{Dol}^G$ of semistable G-Higgs bundles of degree 0 for $G=\mathrm {GL}(2,\mathbb {C}), \mathrm {SL}(2,\mathbb {C})$. By the decomposition theorem of Beilinson, Bernstein and Deligne, one can write the cohomology of $\tilde {\mathcal {M}}_{Dol}^G$ as a direct sum of the intersection cohomology of $\mathcal {M}_{Dol}^G$ plus other summands supported on the singular locus. We use this splitting to compute the intersection cohomology of $\mathcal {M}_{Dol}^G$ and prove that the mixed Hodge structure on it is pure, in analogy with what happens to ordinary cohomology in the smooth case of coprime rank and degree.
Let $f\,{:}\,(\mathbb R^n,0)\to (\mathbb R,0)$ be an analytic function germ with non-isolated singularities and let $F\,{:}\, (\mathbb{R}^{1+n},0) \to (\mathbb{R},0)$ be a 1-parameter deformation of f. Let $ f_t ^{-1}(0) \cap B_\epsilon^n$, $0 < \vert t \vert \ll \epsilon$, be the “generalized” Milnor fiber of the deformation F. Under some conditions on F, we give a topological degree formula for the Euler characteristic of this fiber. This generalizes a result of Fukui.
In this paper, we consider an eigenvalue problem for ordinary differential equations of fourth order with a spectral parameter in the boundary conditions. The location of eigenvalues on real axis, the structure of root subspaces and the oscillation properties of eigenfunctions of this problem are investigated, and asymptotic formulas for the eigenvalues and eigenfunctions are found. Next, by the use of these properties, we establish sufficient conditions for subsystems of root functions of the considered problem to form a basis in the space $L_p,1 < p < \infty$.