To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter contains a brief non-technical overview on Lebesgue’s integration theory with respect to an abstract measure. Further topics include key theorems from the theory, such as convergence theorems (dominated convergence, monotone convergence, Fatou’s lemma), product measures (Fubini’s and Tonelli’s theorem) and abstract differentiation (Radon--Nikodým theorem).
Based on the fact that the incubation periods of epidemic disease in asymptomatically infected and infected individuals are inevitable and different, we propose a diffusive susceptible, asymptomatically infected, symptomatically infected and vaccinated (SAIV) epidemic model with delays in this paper. To see whether epidemic disease can propagate spatially with a constant speed, we focus on the travelling wave solution for this model. When the basic reproduction number of the corresponding spatial-homogenous delayed differential system is greater than one and the wave speed is greater than or equal to the critical speed, we prove that this model admits nontrivial positive travelling wave solutions. Our theoretical results are of benefit to the prevention and control of epidemic.
We construct two planar homoeomorphisms $f$ and $g$ for which the origin is a globally asymptotically stable fixed point whereas for $f \circ g$ and $g \circ f$ the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by $f$ and $g$ where each of the maps appears with a certain probability. This planar construction is also extended to any dimension $>$2 and proves for first time the appearance of the dynamical Parrondo's paradox in odd dimensions.
Complex linear differential equations with entire coefficients are studied in the situation where one of the coefficients is an exponential polynomial and dominates the growth of all the other coefficients. If such an equation has an exponential polynomial solution $f$, then the order of $f$ and of the dominant coefficient are equal, and the two functions possess a certain duality property. The results presented in this paper improve earlier results by some of the present authors, and the paper adjoins with two open problems.
We describe a functional framework suitable to the analysis of the Cahn–Hilliard equation on an evolving surface whose evolution is assumed to be given a priori. The model is derived from balance laws for an order parameter with an associated Cahn–Hilliard energy functional and we establish well-posedness for general regular potentials, satisfying some prescribed growth conditions, and for two singular non-linearities – the thermodynamically relevant logarithmic potential and a double-obstacle potential. We identify, for the singular potentials, necessary conditions on the initial data and the evolution of the surfaces for global-in-time existence of solutions, which arise from the fact that integrals of solutions are preserved over time, and prove well-posedness for initial data on a suitable set of admissible initial conditions. We then briefly describe an alternative derivation leading to a model that instead preserves a weighted integral of the solution and explain how our arguments can be adapted in order to obtain global-in-time existence without restrictions on the initial conditions. Some illustrative examples and further research directions are given in the final sections.
Let $X^{n}$ be an oriented closed generalized $n$-manifold, $n\ge 5$. In our recent paper (Proc. Edinb. Math. Soc. (2) 63 (2020), no. 2, 597–607), we have constructed a map $t:\mathcal {N}(X^{n}) \to H^{st}_{n} ( X^{n}; \mathbb{L}^{+})$ which extends the normal invariant map for the case when $X^{n}$ is a topological $n$-manifold. Here, $\mathcal {N}(X^{n})$ denotes the set of all normal bordism classes of degree one normal maps $(f,\,b): M^{n} \to X^{n},$ and $H^{st}_{*} ( X^{n}; \mathbb{E})$ denotes the Steenrod homology of the spectrum $\mathbb{E}$. An important non-trivial question arose whether the map $t$ is bijective (note that this holds in the case when $X^{n}$ is a topological $n$-manifold). It is the purpose of this paper to prove that the answer to this question is affirmative.
This paper is concerned with the asymptotic propagations for a nonlocal dispersal population model with shifting habitats. In particular, we verify that the invading speed of the species is determined by the speed c of the shifting habitat edge and the behaviours near infinity of the species’ growth rate which is nondecreasing along the positive spatial direction. In the case where the species declines near the negative infinity, we conclude that extinction occurs if c > c*(∞), while c < c*(∞), spreading happens with a leftward speed min{−c, c*(∞)} and a rightward speed c*(∞), where c*(∞) is the minimum KPP travelling wave speed associated with the species’ growth rate at the positive infinity. The same scenario will play out for the case where the species’ growth rate is zero at negative infinity. In the case where the species still grows near negative infinity, we show that the species always survives ‘by moving’ with the rightward spreading speed being either c*(∞) or c*(−∞) and the leftward spreading speed being one of c*(∞), c*(−∞) and −c, where c*(−∞) is the minimum KPP travelling wave speed corresponding to the growth rate at the negative infinity. Finally, we give some numeric simulations and discussions to present and explain the theoretical results. Our results indicate that there may exists a solution like a two-layer wave with the propagation speeds analytically determined for such type of nonlocal dispersal equations.
Consider the following experiment: a deck with m copies of n different card types is randomly shuffled, and a guesser attempts to guess the cards sequentially as they are drawn. Each time a guess is made, some amount of ‘feedback’ is given. For example, one could tell the guesser the true identity of the card they just guessed (the complete feedback model) or they could be told nothing at all (the no feedback model). In this paper we explore a partial feedback model, where upon guessing a card, the guesser is only told whether or not their guess was correct. We show in this setting that, uniformly in n, at most $m+O(m^{3/4}\log m)$ cards can be guessed correctly in expectation. This resolves a question of Diaconis and Graham from 1981, where even the $m=2$ case was open.
Consider a random $n\times n$ zero-one matrix with ‘sparsity’ p, sampled according to one of the following two models: either every entry is independently taken to be one with probability p (the ‘Bernoulli’ model) or each row is independently uniformly sampled from the set of all length-n zero-one vectors with exactly pn ones (the ‘combinatorial’ model). We give simple proofs of the (essentially best-possible) fact that in both models, if $\min(p,1-p)\geq (1+\varepsilon)\log n/n$ for any constant $\varepsilon>0$, then our random matrix is nonsingular with probability $1-o(1)$. In the Bernoulli model, this fact was already well known, but in the combinatorial model this resolves a conjecture of Aigner-Horev and Person.
We study the behaviour of representation varieties of quivers with relations under the operation of node splitting. We show how splitting a node gives a correspondence between certain closed subvarieties of representation varieties for different algebras, which preserves properties like normality or having rational singularities. Furthermore, we describe how the defining equations of such closed subvarieties change under the correspondence.
By working in the ‘relative setting’ (splitting one node at a time), we demonstrate that there are many nonhereditary algebras whose irreducible components of representation varieties are all normal with rational singularities. We also obtain explicit generators of the prime defining ideals of these irreducible components. This class contains all radical square zero algebras, but also many others, as illustrated by examples throughout the paper. We also show that this is true when irreducible components are replaced by orbit closures, for a more restrictive class of algebras. Lastly, we provide applications to decompositions of moduli spaces of semistable representations of certain algebras.
In this article, we study the observability (or equivalently, the controllability) of some subelliptic evolution equations depending on their step. This sheds light on the speed of propagation of these equations, notably in the ‘degenerated directions’ of the subelliptic structure.
First, for any $\gamma \geq 1$, we establish a resolvent estimate for the Baouendi–Grushin-type operator $\Delta _{\gamma }=\partial _x^2+\left \lvert x\right \rvert ^{2\gamma }\partial _y^2$, which has step $\gamma +1$. We then derive consequences for the observability of the Schrödinger-type equation $i\partial _tu-\left (-\Delta _{\gamma }\right )^{s}u=0$, where $s\in \mathbb N$. We identify three different cases: depending on the value of the ratio $(\gamma +1)/s$, observability may hold in arbitrarily small time or only for sufficiently large times or may even fail for any time.
As a corollary of our resolvent estimate, we also obtain observability for heat-type equations $\partial _tu+\left (-\Delta _{\gamma }\right )^su=0$ and establish a decay rate for the damped wave equation associated with $\Delta _{\gamma }$.
The goal of this article is to extend the work of Voevodsky and Morel on the homotopy t-structure on the category of motivic complexes to the context of motives for logarithmic schemes. To do so, we prove an analogue of Morel’s connectivity theorem and show a purity statement for $({\mathbf {P}}^1, \infty )$-local complexes of sheaves with log transfers. The homotopy t-structure on ${\operatorname {\mathbf {logDM}^{eff}}}(k)$ is proved to be compatible with Voevodsky’s t-structure; that is, we show that the comparison functor $R^{{\overline {\square }}}\omega ^*\colon {\operatorname {\mathbf {DM}^{eff}}}(k)\to {\operatorname {\mathbf {logDM}^{eff}}}(k)$ is t-exact. The heart of the homotopy t-structure on ${\operatorname {\mathbf {logDM}^{eff}}}(k)$ is the Grothendieck abelian category of strictly cube-invariant sheaves with log transfers: we use it to build a new version of the category of reciprocity sheaves in the style of Kahn-Saito-Yamazaki and Rülling.
A graph G arrows a graph H if in every 2-edge-colouring of G there exists a monochromatic copy of H. Schelp had the idea that if the complete graph $K_n$ arrows a small graph H, then every ‘dense’ subgraph of $K_n$ also arrows H, and he outlined some problems in this direction. Our main result is in this spirit. We prove that for every sufficiently large n, if $n = 3t+r$ where $r \in \{0,1,2\}$ and G is an n-vertex graph with $\delta(G) \ge (3n-1)/4$, then for every 2-edge-colouring of G, either there are cycles of every length $\{3, 4, 5, \dots, 2t+r\}$ of the same colour, or there are cycles of every even length $\{4, 6, 8, \dots, 2t+2\}$ of the samecolour.
Our result is tight in the sense that no longer cycles (of length $>2t+r$) can be guaranteed and the minimum degree condition cannot be reduced. It also implies the conjecture of Schelp that for every sufficiently large n, every $(3t-1)$-vertex graph G with minimum degree larger than $3|V(G)|/4$ arrows the path $P_{2n}$ with 2n vertices. Moreover, it implies for sufficiently large n the conjecture by Benevides, Łuczak, Scott, Skokan and White that for $n=3t+r$ where $r \in \{0,1,2\}$ and every n-vertex graph G with $\delta(G) \ge 3n/4$, in each 2-edge-colouring of G there exists a monochromatic cycle of length at least $2t+r$.