To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Often it is more instructive to know 'what can go wrong' and to understand 'why a result fails' than to plod through yet another piece of theory. In this text, the authors gather more than 300 counterexamples - some of them both surprising and amusing - showing the limitations, hidden traps and pitfalls of measure and integration. Many examples are put into context, explaining relevant parts of the theory, and pointing out further reading. The text starts with a self-contained, non-technical overview on the fundamentals of measure and integration. A companion to the successful undergraduate textbook Measures, Integrals and Martingales, it is accessible to advanced undergraduate students, requiring only modest prerequisites. More specialized concepts are summarized at the beginning of each chapter, allowing for self-study as well as supplementary reading for any course covering measures and integrals. For researchers, it provides ample examples and warnings as to the limitations of general measure theory. This book forms a sister volume to René Schilling's other book Measures, Integrals and Martingales (www.cambridge.org/9781316620243).
We study a mathematical model proposed in the literature with the aim of describing the interactions between tumor cells and the immune system, when a periodic treatment of immunotherapy is applied. Combining some techniques from non-linear analysis (degree theory, lower and upper solutions, and theory of free-homeomorphisms in the plane), we give a detailed global analysis of the model. We also observe that for certain therapies, the maximum level of aggressiveness of a cancer, for which the treatment works (or does not work), can be computed explicitly. We discuss some strategies for designing therapies. The mathematical analysis is completed with numerical results and conclusions.
Two-sided bounds are explored for concentration functions and Rényi entropies in the class of discrete log-concave probability distributions. They are used to derive certain variants of the entropy power inequalities.
Over the past few years, deep learning has risen to the foreground as a topic of massive interest, mainly as a result of successes obtained in solving large-scale image processing tasks. There are multiple challenging mathematical problems involved in applying deep learning: most deep learning methods require the solution of hard optimisation problems, and a good understanding of the trade-off between computational effort, amount of data and model complexity is required to successfully design a deep learning approach for a given problem.. A large amount of progress made in deep learning has been based on heuristic explorations, but there is a growing effort to mathematically understand the structure in existing deep learning methods and to systematically design new deep learning methods to preserve certain types of structure in deep learning. In this article, we review a number of these directions: some deep neural networks can be understood as discretisations of dynamical systems, neural networks can be designed to have desirable properties such as invertibility or group equivariance and new algorithmic frameworks based on conformal Hamiltonian systems and Riemannian manifolds to solve the optimisation problems have been proposed. We conclude our review of each of these topics by discussing some open problems that we consider to be interesting directions for future research.
Let $${{\mathcal G}_{n,r,s}}$$ denote a uniformly random r-regular s-uniform hypergraph on the vertex set {1, 2, … , n}. We establish a threshold result for the existence of a spanning tree in $${{\mathcal G}_{n,r,s}}$$, restricting to n satisfying the necessary divisibility conditions. Specifically, we show that when s ≥ 5, there is a positive constant ρ(s) such that for any r ≥ 2, the probability that $${{\mathcal G}_{n,r,s}}$$ contains a spanning tree tends to 1 if r > ρ(s), and otherwise this probability tends to zero. The threshold value ρ(s) grows exponentially with s. As $${{\mathcal G}_{n,r,s}}$$ is connected with probability that tends to 1, this implies that when r ≤ ρ(s), most r-regular s-uniform hypergraphs are connected but have no spanning tree. When s = 3, 4 we prove that $${{\mathcal G}_{n,r,s}}$$ contains a spanning tree with probability that tends to 1, for any r ≥ 2. Our proof also provides the asymptotic distribution of the number of spanning trees in $${{\mathcal G}_{n,r,s}}$$ for all fixed integers r, s ≥ 2. Previously, this asymptotic distribution was only known in the trivial case of 2-regular graphs, or for cubic graphs.
Let X be a 4-dimensional toric orbifold. If $H^{3}(X)$ has a non-trivial odd primary torsion, then we show that X is homotopy equivalent to the wedge of a Moore space and a CW-complex. As a corollary, given two 4-dimensional toric orbifolds having no 2-torsion in the cohomology, we prove that they have the same homotopy type if and only their integral cohomology rings are isomorphic.
We prove that most permutations of degree $n$ have some power which is a cycle of prime length approximately $\log n$. Explicitly, we show that for $n$ sufficiently large, the proportion of such elements is at least $1-5/\log \log n$ with the prime between $\log n$ and $(\log n)^{\log \log n}$. The proportion of even permutations with this property is at least $1-7/\log \log n$.
We study a new family of sign-changing solutions to the stationary nonlinear Schrödinger equation
\[ -\Delta v +q v =|v|^{p-2} v, \qquad \text{in}\,{ {\mathbb{R}^{3}},} \]
with $2 < p < \infty$ and $q \ge 0$. These solutions are spiraling in the sense that they are not axially symmetric but invariant under screw motion, i.e., they share the symmetry properties of a helicoid. In addition to existence results, we provide information on the shape of spiraling solutions, which depends on the parameter value representing the rotational slope of the underlying screw motion. Our results complement a related analysis of Del Pino, Musso and Pacard in their study (2012, Manuscripta Math., 138, 273–286) for the Allen–Cahn equation, whereas the nature of results and the underlying variational structure are completely different.
For any odd prime p, we construct an infinite family of imaginary quadratic fields whose class numbers are divisible by p. We give a corollary that settles Iizuka’s conjecture for the case n=1 and p>2.
In this short note, we prove the following analog of the Kővári–Sós–Turán theorem for intersection graphs of boxes. If G is the intersection graph of n axis-parallel boxes in $${{\mathbb{R}}^d}$$ such that G contains no copy of Kt,t, then G has at most ctn( log n)2d+3 edges, where c = c(d)>0 only depends on d. Our proof is based on exploring connections between boxicity, separation dimension and poset dimension. Using this approach, we also show that a construction of Basit, Chernikov, Starchenko, Tao and Tran of K2,2-free incidence graphs of points and rectangles in the plane can be used to disprove a conjecture of Alon, Basavaraju, Chandran, Mathew and Rajendraprasad. We show that there exist graphs of separation dimension 4 having superlinear number of edges.
where $B_1(0)\subset \mathbb {R}^{N}$$(N\geq 3)$ is a ball of radial $1$ centred at $0$, $p>0$ and $\alpha \in \mathbb {R}$. We are concerned with the estimate, existence and nonexistence of positive solutions of the equation, in particular, the equation with Dirichlet boundary condition. For the case $0< p<({N+2})/({N-2})$, we establish the estimate of positive solutions. When $\alpha \leq -2$ and $p>1$, we give some conclusions with respect to nonexistence. When $\alpha >-2$ and $1< p<({N+2})/({N-2})$, we obtain the existence of positive solution for the corresponding Dirichlet problem. When $0< p\leq 1$ and $\alpha \leq -2$, we show the nonexistence of positive solutions. When $0< p<1$, $\alpha >-2$, we give some results with respect to existence and uniqueness of positive solutions.
This paper studies the periodic trajectories of a novel age-structured prey–predator system with Michaelis–Menten functional response including delays and asymmetric diffusion. To begin with, the system is turned into an abstract non-densely defined Cauchy problem, and a time-lag effect in their interaction is investigated. Next, we acquire that this system appears a periodic orbit near the positive steady state by employing the method of integrated semigroup and the Hopf bifurcation theory for semilinear equations with non-dense domain, which is also the main result of this article. Finally, in order to illustrate our theoretical analysis more vividly, we make some numerical simulations and give some discussions.
The Neumann–Poincaré (NP) operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission problem via the boundary integral formulation. Recently, a series expression of the NP operator was developed in two dimensions based on geometric function theory [34]. In this paper, we investigate geometric properties of composite materials using this series expansion. In particular, we obtain explicit formulas for the polarisation tensor and the effective conductivity for an inclusion or a periodic array of inclusions of arbitrary shape with extremal conductivity, in terms of the associated exterior conformal mapping. Also, we observe by numerical computations that the spectrum of the NP operator has a monotonic behaviour with respect to the shape deformation of the inclusion. Additionally, we derive inequality relations of the coefficients of the Riemann mapping of an arbitrary Lipschitz domain using the properties of the polarisation tensor corresponding to the domain.
Let K be a field of arbitrary characteristic, $${\cal A}$$ be a commutative K-algebra which is a domain of essentially finite type (e.g., the algebra of functions on an irreducible affine algebraic variety), $${a_r}$$ be its Jacobian ideal, and $${\cal D}\left( {\cal A} \right)$$ be the algebra of differential operators on the algebra $${\cal A}$$. The aim of the paper is to give a simplicity criterion for the algebra $${\cal D}\left( {\cal A} \right)$$: the algebra$${\cal D}\left( {\cal A} \right)$$is simple iff$${\cal D}\left( {\cal A} \right)a_r^i{\cal D}\left( {\cal A} \right) = {\cal D}\left( {\cal A} \right)$$for all i ≥ 1 provided the field K is a perfect field. Furthermore, a simplicity criterion is given for the algebra $${\cal D}\left( R \right)$$ of differential operators on an arbitrary commutative algebra R over an arbitrary field. This gives an answer to an old question to find a simplicity criterion for algebras of differential operators.
Let $p$ be a prime number. For a positive integer $n$ and a real number $\xi$, let $\lambda _n (\xi )$ denote the supremum of the real numbers $\lambda$ for which there are infinitely many integer tuples $(x_0, x_1, \ldots , x_n)$ such that $| x_0 \xi - x_1|_p, \ldots , | x_0 \xi ^{n} - x_n|_p$ are all less than $X^{-\lambda - 1}$, where $X$ is the maximum of $|x_0|, |x_1|, \ldots , |x_n|$. We establish new results on the Hausdorff dimension of the set of real numbers $\xi$ for which $\lambda _n (\xi )$ is equal to (or greater than or equal to) a given value.
We discuss the finiteness of (two-term) silting objects. First, we investigate new triangulated categories without silting object. Second, we study two classes of $\tau$-tilting-finite algebras and give the numbers of their two-term silting objects. Finally, we explore when $\tau$-tilting-finiteness implies representation-finiteness and obtain several classes of algebras in which a $\tau$-tilting-finite algebra is representation-finite.
The aim of this paper is to study complete (noncompact) m-quasi-Einstein manifolds with λ=0 satisfying a fourth-order vanishing condition on the Weyl tensor and zero radial Weyl curvature. In this case, we are able to prove that an m-quasi-Einstein manifold (m>1) with λ=0 on a simply connected n-dimensional manifold(Mn, g), (n ≥ 4), of nonnegative Ricci curvature and zero radial Weyl curvature must be a warped product with (n–1)–dimensional Einstein fiber, provided that M has fourth-order divergence-free Weyl tensor (i.e. div4W =0).