To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This work studies functional difference equations of the second order with a potential belonging to a special class of meromorphic functions. The equations depend on a spectral parameter. Consideration of this type of equations is motivated by applications in diffraction theory and by construction of eigenfunctions for the Laplace operator in angular domains. In particular, such eigenfunctions describe eigenoscillations of acoustic waves in angular domains with ‘semitransparent’ boundary conditions. For negative values of the spectral parameter, we study essential and discrete spectrum of the equations and describe properties of the corresponding solutions. The study is based on the reduction of the functional difference equations to integral equations with a symmetric kernel. A sufficient condition is formulated for the potential that ensures existence of the discrete spectrum. The obtained results are applied for studying the behaviour of eigenfunctions for the Laplace operator in adjacent angular domains with the Robin-type boundary conditions on their common boundary. At infinity, the eigenfunctions vanish exponentially as was expected. However, the rate of such decay depends on the observation direction. In particular, in a vicinity of some directions, the regime of decay is switched from one to another and such asymptotic behaviour is described by a Fresnel-type integral.
Classical results about peaking from complex interpolation theory are extended to polynomials on a closed disk, and on the complement of its interior. New results are obtained concerning interpolation by univalent polynomials on a Jordan domain whose boundary satisfies certain smoothness conditions.
In this paper, we study the structure of the rational cohomology groups of the IA-automorphism group $\mathrm {IA}_3$ of the free group of rank three by using combinatorial group theory and representation theory. In particular, we detect a nontrivial irreducible component in the second cohomology group of $\mathrm {IA}_3$, which is not contained in the image of the cup product map of the first cohomology groups. We also show that the triple cup product of the first cohomology groups is trivial. As a corollary, we obtain that the fourth term of the lower central series of $\mathrm {IA}_3$ has finite index in that of the Andreadakis–Johnson filtration of $\mathrm {IA}_3$.
Two theorems of Gateva-Ivanova [Set-theoretic solutions of the Yang-Baxter equation, braces and symmetric groups, Adv. Math. 338 (2018), 649–701] on square-free set-theoretic solutions to the Yang–Baxter equation are extended to a wide class of solutions. The square-free hypothesis is almost completely removed. Gateva-Ivanova and Majid's ‘cyclic’ condition ${\boldsymbol {\rm lri}}$ is shown to be equivalent to balancedness, introduced in Rump [A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Adv. Math. 193 (2005), 40–55]. Basic results on balanced solutions are established. For example, it is proved that every finite, not necessarily square-free, balanced brace determines a multipermutation solution.
We show that the dynamic asymptotic dimension of an action of an infinite virtually cyclic group on a compact Hausdorff space is always one if the action has the marker property. This in particular covers a well-known result of Guentner, Willett, and Yu for minimal free actions of infinite cyclic groups. As a direct consequence, we substantially extend a famous result by Toms and Winter on the nuclear dimension of $C^{*}$-algebras arising from minimal free $\mathbb {Z}$-actions. Moreover, we also prove the marker property for all free actions of countable groups on finite-dimensional compact Hausdorff spaces, generalizing a result of Szabó in the metrisable setting.
Building upon work of Epstein, May and Drury, we define and investigate the mod p Steenrod operations on the de Rham cohomology of smooth algebraic stacks over a field of characteristic $p>0$. We then compute the action of the operations on the de Rham cohomology of classifying stacks for finite groups, connected reductive groups for which p is not a torsion prime and (special) orthogonal groups when $p=2$.
We present a sufficient condition for the $kG$-Scott module with vertex $P$ to remain indecomposable under the Brauer construction for any subgroup $Q$ of $P$ as $k[Q\,C_G(Q)]$-module, where $k$ is a field of characteristic $2$, and $P$ is a semidihedral $2$-subgroup of a finite group $G$. This generalizes results for the cases where $P$ is abelian or dihedral. The Brauer indecomposability is defined by R. Kessar, N. Kunugi and N. Mitsuhashi. The motivation of this paper is the fact that the Brauer indecomposability of a $p$-permutation bimodule (where $p$ is a prime) is one of the key steps in order to obtain a splendid stable equivalence of Morita type by making use of the gluing method due to Broué, Rickard, Linckelmann and Rouquier, that then can possibly be lifted to a splendid derived (splendid Morita) equivalence.
The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier transform method. In this work, we study the problem in which the static Robin condition $$bq(0,t) + {q_x}(0,t) = 0$$ is replaced with a dynamic Robin condition; $$b = b(t)$$ is allowed to vary in time. Applications include convective heating by a corrosive liquid. We present a solution representation and justify its validity, via an extension of the Fokas transform method. We show how to reduce the problem to a variable coefficient fractional linear ordinary differential equation for the Dirichlet boundary value. We implement the fractional Frobenius method to solve this equation and justify that the error in the approximate solution of the original problem converges appropriately. We also demonstrate an argument for existence and unicity of solutions to the original dynamic Robin problem for the heat equation. Finally, we extend these results to linear evolution equations of arbitrary spatial order on the half-line, with arbitrary linear dynamic boundary conditions.
The Toms–Winter conjecture is verified for those separable, unital, nuclear, infinite-dimensional real C*-algebras for which the complexification has a tracial state space with compact extreme boundary of finite covering dimension.
Using some formulas of S. Ramanujan, we compute in closed form the Fourier transform of functions related to Riemann zeta function $\zeta (s)=\sum \nolimits _{n=1}^{\infty } {1}/{n^{s}}$ and other Dirichlet series.
Let $T = (T_1, \ldots , T_n)$ be a commuting tuple of bounded linear operators on a Hilbert space $\mathcal{H}$. The multiplicity of $T$ is the cardinality of a minimal generating set with respect to $T$. In this paper, we establish an additive formula for multiplicities of a class of commuting tuples of operators. A special case of the main result states the following: Let $n \geq 2$, and let $\mathcal{Q}_i$, $i = 1, \ldots , n$, be a proper closed shift co-invariant subspaces of the Dirichlet space or the Hardy space over the unit disc in $\mathbb {C}$. If $\mathcal{Q}_i^{\bot }$, $i = 1, \ldots , n$, is a zero-based shift invariant subspace, then the multiplicity of the joint $M_{\textbf {z}} = (M_{z_1}, \ldots , M_{z_n})$-invariant subspace $(\mathcal{Q}_1 \otimes \cdots \otimes \mathcal{Q}_n)^{\perp }$ of the Dirichlet space or the Hardy space over the unit polydisc in $\mathbb {C}^{n}$ is given by
The notion of the capacity of a polynomial was introduced by Gurvits around 2005, originally to give drastically simplified proofs of the van der Waerden lower bound for permanents of doubly stochastic matrices and Schrijver’s inequality for perfect matchings of regular bipartite graphs. Since this seminal work, the notion of capacity has been utilised to bound various combinatorial quantities and to give polynomial-time algorithms to approximate such quantities (e.g. the number of bases of a matroid). These types of results are often proven by giving bounds on how much a particular differential operator can change the capacity of a given polynomial. In this paper, we unify the theory surrounding such capacity-preserving operators by giving tight capacity preservation bounds for all nondegenerate real stability preservers. We then use this theory to give a new proof of a recent result of Csikvári, which settled Friedland’s lower matching conjecture.
Let $G_1, \ldots , G_k$ be finite-dimensional vector spaces over a prime field $\mathbb {F}_p$. A multilinear variety of codimension at most $d$ is a subset of $G_1 \times \cdots \times G_k$ defined as the zero set of $d$ forms, each of which is multilinear on some subset of the coordinates. A map $\phi$ defined on a multilinear variety $B$ is multilinear if for each coordinate $c$ and all choices of $x_i \in G_i$, $i\not =c$, the restriction map $y \mapsto \phi (x_1, \ldots , x_{c-1}, y, x_{c+1}, \ldots , x_k)$ is linear where defined. In this note, we show that a multilinear map defined on a multilinear variety of codimension at most $d$ coincides on a multilinear variety of codimension $O_{k}(d^{O_{k}(1)})$ with a multilinear map defined on the whole of $G_1\times \cdots \times G_k$. Additionally, in the case of general finite fields, we deduce similar (but slightly weaker) results.
holds for all $x,\,y\in X$. A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$, there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.
Let $(z_k)$ be a sequence of distinct points in the unit disc $\mathbb {D}$ without limit points there. We are looking for a function $a(z)$ analytic in $\mathbb {D}$ and such that possesses a solution having zeros precisely at the points $z_k$, and the resulting function $a(z)$ has ‘minimal’ growth. We focus on the case of non-separated sequences $(z_k)$ in terms of the pseudohyperbolic distance when the coefficient $a(z)$ is of zero order, but $\sup _{z\in {\mathbb D}}(1-|z|)^p|a(z)| = + \infty$ for any $p > 0$. We established a new estimate for the maximum modulus of $a(z)$ in terms of the functions $n_z(t)=\sum \nolimits _{|z_k-z|\le t} 1$ and $N_z(r) = \int_0^r {{(n_z(t)-1)}^ + } /t{\rm d}t.$ The estimate is sharp in some sense. The main result relies on a new interpolation theorem.
We prove that solutions to the quintic semilinear wave equation with variable coefficients in ${{\mathbb {R}}}^{1+3}$ scatter to a solution to the corresponding linear wave equation. The coefficients are small and decay as $|x|\to \infty$, but are allowed to be time dependent. The proof uses local energy decay estimates to establish the decay of the $L^{6}$ norm of the solution as $t\to \infty$.