To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this article is to extend the scope of the theory of regularity structures in order to deal with a large class of singular stochastic partial differential equations of the form
\begin{equation*}\partial_t u = \mathfrak{L} u+ F(u, \xi),\end{equation*}
where the differential operator $\mathfrak{L}$ fails to be elliptic. This is achieved by interpreting the base space $\mathbb{R}^{d}$ as a non-trivial homogeneous Lie group $\mathbb{G}$ such that the differential operator $\partial_t -\mathfrak{L}$ becomes a translation invariant hypoelliptic operator on $\mathbb{G}$. Prime examples are the kinetic Fokker-Planck operator $\partial_t -\Delta_v - v\cdot \nabla_x$ and heat-type operators associated with sub-Laplacians. As an application of the developed framework, we solve a class of parabolic Anderson type equations
\begin{equation*}\partial_t u = \sum_{i} X^2_i u + u (\xi-c)\end{equation*}
on the compact quotient of an arbitrary Carnot group.
We present necessary and sufficient conditions for an operator of the type sum of squares to be globally hypoelliptic on $T \times G$, where T is a compact Riemannian manifold and G is a compact Lie group. These conditions involve the global hypoellipticity of a system of vector fields on G and are weaker than Hörmander’s condition, while generalizing the well known Diophantine conditions on the torus. Examples of operators satisfying these conditions in the general setting are provided.
In this note, we prove two monotonicity formulas for solutions of $\Delta _H f = c$ and $\Delta _H f - \partial _t f = c$ in Carnot groups. Such formulas involve the right-invariant carré du champ of a function and they are false for the left-invariant one. The main results, theorems 1.1 and 1.2, display a resemblance with two deep monotonicity formulas respectively due to Alt–Caffarelli–Friedman for the standard Laplacian, and to Caffarelli for the heat equation. In connection with this aspect we ask the question whether an ‘almost monotonicity’ formula be possible. In the last section, we discuss the failure of the nondecreasing monotonicity of an Almgren type functional.
We prove the existence of nontrivial ground state solutions of the critical quasilinear Hénon equation $\displaystyle -\Delta _p u=|x|^{\alpha _1}|u|^{p^{*}(\alpha _1)-2}u-|x|^{\alpha _2}|u|^{p^{*}(\alpha _2)-2}u\ \ {\rm in}\ \mathbb {R}^{N}.$ It is a new problem in the sense that the signs of the coefficients of critical terms are opposite.
This article deals with kinetic Fokker–Planck equations with essentially bounded coefficients. A weak Harnack inequality for nonnegative super-solutions is derived by considering their log-transform and adapting an argument due to S. N. Kružkov (1963). Such a result rests on a new weak Poincaré inequality sharing similarities with the one introduced by W. Wang and L. Zhang in a series of works about ultraparabolic equations (2009, 2011, 2017). This functional inequality is combined with a classical covering argument recently adapted by L. Silvestre and the second author (2020) to kinetic equations.
This work is devoted to the study of uncertainty principles for finite combinations of Hermite functions. We establish some spectral inequalities for control subsets that are thick with respect to some unbounded densities growing almost linearly at infinity, and provide quantitative estimates, with respect to the energy level of the Hermite functions seen as eigenfunctions of the harmonic oscillator, for the constants appearing in these spectral estimates. These spectral inequalities allow us to derive the null-controllability in any positive time for evolution equations enjoying specific regularizing effects. More precisely, for a given index $\frac {1}{2} \leq \mu <1$, we deduce sufficient geometric conditions on control subsets to ensure the null-controllability of evolution equations enjoying regularizing effects in the symmetric Gelfand–Shilov space $S^{\mu }_{\mu }(\mathbb {R}^{n})$. These results apply in particular to derive the null-controllability in any positive time for evolution equations associated to certain classes of hypoelliptic non-self-adjoint quadratic operators, or to fractional harmonic oscillators.
We present self-contained proofs of the stability of the constants in the volume doubling property and the Poincaré and Sobolev inequalities for Riemannian approximations in Carnot groups. We use an explicit Riemannian approximation based on the Lie algebra structure that is suited for studying nonlinear subelliptic partial differential equations. Our approach is independent of the results obtained in [11].
In this article, we study the observability (or equivalently, the controllability) of some subelliptic evolution equations depending on their step. This sheds light on the speed of propagation of these equations, notably in the ‘degenerated directions’ of the subelliptic structure.
First, for any $\gamma \geq 1$, we establish a resolvent estimate for the Baouendi–Grushin-type operator $\Delta _{\gamma }=\partial _x^2+\left \lvert x\right \rvert ^{2\gamma }\partial _y^2$, which has step $\gamma +1$. We then derive consequences for the observability of the Schrödinger-type equation $i\partial _tu-\left (-\Delta _{\gamma }\right )^{s}u=0$, where $s\in \mathbb N$. We identify three different cases: depending on the value of the ratio $(\gamma +1)/s$, observability may hold in arbitrarily small time or only for sufficiently large times or may even fail for any time.
As a corollary of our resolvent estimate, we also obtain observability for heat-type equations $\partial _tu+\left (-\Delta _{\gamma }\right )^su=0$ and establish a decay rate for the damped wave equation associated with $\Delta _{\gamma }$.
In this article, we study some Kramers–Fokker–Planck operators with a polynomial potential $V(q)$ of degree greater than two having quadratic limiting behaviour. This work provides an accurate global subelliptic estimate for Kramers–Fokker–Planck operators under some conditions imposed on the potential.
We prove Hölder continuous regularity of bounded, uniformly continuous, viscosity solutions of degenerate fully nonlinear equations defined in all of ℝn space. In particular, the result applies also to some operators in Carnot groups.
In Albano, Bove and Mughetti [J. Funct. Anal. 274(10) (2018), 2725–2753]; Bove and Mughetti [Anal. PDE 10(7) (2017), 1613–1635] it was shown that Treves conjecture for the real analytic hypoellipticity of sums of squares operators does not hold. Models were proposed where the critical points causing a non-analytic regularity might be interpreted as strata. We stress that up to now there is no notion of stratum which could replace the original Treves stratum. In the proposed models such ‘strata’ were non-symplectic analytic submanifolds of the characteristic variety. In this note we modify one of those models in such a way that the critical points are a symplectic submanifold of the characteristic variety while still not being a Treves stratum. We show that the operator is analytic hypoelliptic.
We introduce an Almgren frequency function of the sub-$p$-Laplace equation on the Heisenberg group to establish a doubling estimate under the assumption that the frequency function is locally bounded. From this, we obtain some partial results on unique continuation for the sub-$p$-Laplace equation.
We establish the multiplicity of positive weak solutions for the quasilinear Dirichlet problem −Lpu + |u|p−2u = h(u) in Ωλ, u = 0 on ∂Ωλ, where Ωλ = λΩ, Ω is a bounded domain in ℝN, λ is a positive parameter, Lpu ≐ Δpu + Δp(u2)u and the nonlinear term h(u) has subcritical growth. We use minimax methods together with the Lyusternik–Schnirelmann category theory to get multiplicity of positive solutions.
Descloux and Geymonat considered a model problem in two-dimensional magnetohydrodynamics and conjectured that the essential spectrum has an explicitly given band structure. This conjecture was recently proved by Faierman, Mennicken, and Möller by reducing the problem to that for a 2×2 block operator matrix. In a subsequent paper Faierman and Mennicken investigated the essential spectrum for the problem arising from a particular type of perturbation of precisely one of the operator entries in the matrix representation cited above of the original problem considered by Descloux and Geymonat. In this paper we extend the results of that work by investigating the essential spectrum for the problem arising from particular types of perturbations of all but one of the aforementioned operators. It remains an open question whether one can perturb the exceptional operator in such a way as to leave the essential spectrum unchanged.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.