To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider meromorphic solutions of functional-differential equations
\[ f^{(k)}(z)=a(f^{n}\circ g)(z)+bf(z)+c, \]
where $n,\,~k$ are two positive integers. Firstly, using an elementary method, we describe the forms of $f$ and $g$ when $f$ is rational and $a(\neq 0)$, $b$, $c$ are constants. In addition, by employing Nevanlinna theory, we show that $g$ must be linear when $f$ is transcendental and $a(\neq 0)$, $b$, $c$ are polynomials in $\mathbb {C}$.
Let $G= SL_{n+1}$ be defined over an algebraically closed field of characteristic $p > 2$. For each $n \geq 1$, there exists a singular block in the category of $G_1$-modules, which contains precisely $n+1$ irreducible modules. We are interested in the ‘lift’ of this block to the category of $G_1T$-modules. Imposing only mild assumptions on $p$, we will perform a number of calculations in this setting, including a complete determination of the Loewy series for the baby Verma modules and all possible extensions between the irreducible modules. In the case where $p$ is extremely large, we will also explicitly compute the Loewy series for the indecomposable projective modules.
In this paper, we consider the Cauchy problem for an inviscid compressible Oldroyd-B model in three dimensions. The global well posedness of strong solutions and the associated time-decay estimates in Sobolev spaces are established near an equilibrium state. The vanishing of viscosity is the main challenge compared with [47] where the viscosity coefficients are included and the decay rates for the highest-order derivatives of the solutions seem not optimal. One of the main objectives of this paper is to develop some new dissipative estimates such that the smallness of the initial data and decay rates are independent of the viscosity. Moreover, we prove that the decay rates for the highest-order derivatives of the solutions are optimal, which is of independent interest. Our proof relies on Fourier theory and delicate energy method.
We consider two inclusions of $C^{*}$-algebras whose small $C^{*}$-algebras have approximate units of the large $C^{*}$-algebras and their two spaces of all bounded bimodule linear maps. We suppose that the two inclusions of $C^{*}$-algebras are strongly Morita equivalent. In this paper, we shall show that there exists an isometric isomorphism from one of the spaces of all bounded bimodule linear maps to the other space and we shall study the basic properties about the isometric isomorphism. And, using this isometric isomorphism, we define the Picard group for a bimodule linear map and discuss the Picard group for a bimodule linear map.
A group is $\frac 32$-generated if every non-trivial element is part of a generating pair. In 2019, Donoven and Harper showed that many Thompson groups are $\frac 32$-generated and posed five questions. The first of these is whether there exists a 2-generated group with every proper quotient cyclic that is not $\frac 32$-generated. This is a natural question given the significant work in proving that no finite group has this property, but we show that there is such an infinite group. The groups we consider are a family of finite index subgroups $G_1,\, G_2,\, \ldots$ of the Houghton group $\operatorname {FSym}(\mathbb {Z})\rtimes \mathbb {Z}$. We then show that $G_1$ and $G_2$ are $\frac 32$-generated and investigate the related notion of spread for these groups. We are able to show that they have finite spread at least 2. These are, therefore, the first infinite groups to be shown to have finite positive spread, and the first to be shown to have spread at least 2 (other than $\mathbb {Z}$ and the Tarski monsters, which have infinite spread). As a consequence, for each $k\in \{2,\, 3,\, \ldots \}$, we also have that $G_{2k}$ is index $k$ in $G_2$ but $G_2$ is $\frac 32$-generated whereas $G_{2k}$ is not.
We study the $\Gamma$-convergence of nonconvex vectorial integral functionals whose integrands satisfy possibly degenerate growth and coercivity conditions. The latter involve suitable scale-dependent weight functions. We prove that under appropriate uniform integrability conditions on the weight functions, which shall belong to a Muckenhoupt class, the corresponding functionals $\Gamma$-converge, up to subsequences, to a degenerate integral functional defined on a limit weighted Sobolev space. The general analysis is then applied to the case of random stationary integrands and weights to prove a stochastic homogenization result for the corresponding functionals.
Let X be a finite connected poset and K a field. We study the question, when all Lie automorphisms of the incidence algebra I(X, K) are proper. Without any restriction on the length of X, we find only a sufficient condition involving certain equivalence relation on the set of maximal chains of X. For some classes of posets of length one, such as finite connected crownless posets (i.e., without weak crown subposets), crowns, and ordinal sums of two anti-chains, we give a complete answer.
In this work we prove a Fourier–Bros–Iagolnitzer (F.B.I.) characterisation for Gevrey vectors on hypo-analytic structures and we analyse the main differences of Gevrey regularity and hypo-analyticity concerning the F.B.I. transform. We end with an application of this characterisation on a propagation of Gevrey singularities result for solutions of the nonhomogeneous system associated with the hypo-analytic structure for analytic structures of tube type.
Structural changes of the pore space and clogging phenomena are inherent to many porous media applications. However, related analytical investigations remain challenging due to potentially vanishing coefficients in the respective systems of partial differential equations. In this research, we apply an appropriate scaling of the unknowns and work with porosity-weighted function spaces. This enables us to prove existence, uniqueness and non-negativity of weak solutions to a combined flow and transport problem with vanishing, but prescribed porosity field, permeability and diffusion.
According to a 2002 theorem by Cardaliaguet and Tahraoui, an isotropic, compact and connected subset of the group $\textrm {GL}^{\!+}(2)$ of invertible $2\times 2$ - - matrices is rank-one convex if and only if it is polyconvex. In a 2005 Journal of Convex Analysis article by Alexander Mielke, it has been conjectured that the equivalence of rank-one convexity and polyconvexity holds for isotropic functions on $\textrm {GL}^{\!+}(2)$ as well, provided their sublevel sets satisfy the corresponding requirements. We negatively answer this conjecture by giving an explicit example of a function $W\colon \textrm {GL}^{\!+}(2)\to \mathbb {R}$ which is not polyconvex, but rank-one convex as well as isotropic with compact and connected sublevel sets.
Skew-gentle algebras are a generalisation of the well-known class of gentle algebras with which they share many common properties. In this work, using non-commutative Gröbner basis theory, we show that these algebras are strong Koszul and that the Koszul dual is again skew-gentle. We give a geometric model of their bounded derived categories in terms of polygonal dissections of surfaces with orbifold points, establishing a correspondence between curves in the orbifold and indecomposable objects. Moreover, we show that the orbifold dissections encode homological properties of skew-gentle algebras such as their singularity categories, their Gorenstein dimensions and derived invariants such as the determinant of their q-Cartan matrices.
We study stationary solutions to the Keller–Segel equation on curved planes. We prove the necessity of the mass being $8 \pi$ and a sharp decay bound. Notably, our results do not require the solutions to have a finite second moment, and thus are novel already in the flat case. Furthermore, we provide a correspondence between stationary solutions to the static Keller–Segel equation on curved planes and positively curved Riemannian metrics on the sphere. We use this duality to show the nonexistence of solutions in certain situations. In particular, we show the existence of metrics, arbitrarily close to the flat one on the plane, that do not support stationary solutions to the static Keller–Segel equation (with any mass). Finally, as a complementary result, we prove a curved version of the logarithmic Hardy–Littlewood–Sobolev inequality and use it to show that the Keller–Segel free energy is bounded from below exactly when the mass is $8 \pi$, even in the curved case.
We investigate the equilibrium configurations of closed planar elastic curves of fixed length, whose stiffness, also known as the bending rigidity, depends on an additional density variable. The underlying variational model relies on the minimisation of a bending energy with respect to shape and density and can be considered as a one-dimensional analogue of the Canham–Helfrich model for heterogeneous biological membranes. We present a generalised Euler–Bernoulli elastica functional featuring a density-dependent stiffness coefficient. In order to treat the inherent nonconvexity of the problem, we introduce an additional length scale in the model by means of a density gradient term. We derive the system of Euler–Lagrange equations and study the bifurcation structure of solutions with respect to the model parameters. Both analytical and numerical results are presented.
A Simons type formula for submanifolds with parallel normalized mean curvature vector field (pnmc submanifolds) in the product spaces $M^{n}(c)\times \mathbb {R}$, where $M^{n}(c)$ is a space form with constant sectional curvature $c\in \{-1,1\}$, it is shown. As an application is obtained rigidity results for submanifolds with constant second mean curvature.
In this paper, we present explicit and computable error bounds for the asymptotic expansions of the Hermite polynomials with Plancherel–Rotach scale. Three cases, depending on whether the scaled variable lies in the outer or oscillatory interval, or it is the turning point, are considered separately. We introduce the ‘branch cut’ technique to express the error terms as integrals on the contour taken as the one-sided limit of curves approaching the branch cut. This new technique enables us to derive simple error bounds in terms of elementary functions. We also provide recursive procedures for the computation of the coefficients appearing in the asymptotic expansions.
We study quantitative relationships between the triangle removal lemma and several of its variants. One such variant, which we call the triangle-free lemma, states that for each $\epsilon>0$ there exists M such that every triangle-free graph G has an $\epsilon$-approximate homomorphism to a triangle-free graph F on at most M vertices (here an $\epsilon$-approximate homomorphism is a map $V(G) \to V(F)$ where all but at most $\epsilon \left\lvert{V(G)}\right\rvert^2$ edges of G are mapped to edges of F). One consequence of our results is that the least possible M in the triangle-free lemma grows faster than exponential in any polynomial in $\epsilon^{-1}$. We also prove more general results for arbitrary graphs, as well as arithmetic analogues over finite fields, where the bounds are close to optimal.
This Chapter covers optional Calculus topics such as the Fubini Theorem, Riemann Integration, the Fundamental Theorem of Calculus, Integration by Parts, Mean Value Theorem, and Absolute Continuity.