To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Li et al. [A spectral radius type formula for approximation numbers of composition operators, J. Funct. Anal. 267(12) (2014), 4753-4774] proved a spectral radius type formula for the approximation numbers of composition operators on analytic Hilbert spaces with radial weights and on $H^{p}$ spaces, $p\geq 1$, involving Green capacity. We prove that their formula holds for a wide class of Banach spaces of analytic functions and weights.
The k-gonal models of random groups are defined as the quotients of free groups on n generators by cyclically reduced words of length k. As k tends to infinity, this model approaches the Gromov density model. In this paper, we show that for any fixed $d_0 \in (0, 1)$, if positive k-gonal random groups satisfy Property (T) with overwhelming probability for densities $d >d_0$, then so do jk-gonal random groups, for any $j \in \mathbb{N}$. In particular, this shows that for densities above 1/3, groups in 3k-gonal models satisfy Property (T) with probability 1 as n approaches infinity.
Using crossed homomorphisms, we show that the category of weak representations (respectively admissible representations) of Lie–Rinehart algebras (respectively Leibniz pairs) is a left module category over the monoidal category of representations of Lie algebras. In particular, the corresponding bifunctor of monoidal categories is established to give new weak representations (respectively admissible representations) of Lie–Rinehart algebras (respectively Leibniz pairs). This generalises and unifies various existing constructions of representations of many Lie algebras by using this new bifunctor. We construct some crossed homomorphisms in different situations and use our actions of monoidal categories to recover some known constructions of representations of various Lie algebras and to obtain new representations for generalised Witt algebras and their Lie subalgebras. The cohomology theory of crossed homomorphisms between Lie algebras is introduced and used to study linear deformations of crossed homomorphisms.
We give a motivic proof of the fact that for nonsingular real tropical complete intersections, the Euler characteristic of the real part is equal to the signature of the complex part. This was originally proved by Itenberg in the case of surfaces in $\mathbb {C}P^{3}$, and has been successively generalized by Bertrand and by Bihan and Bertrand. Our proof, different from previous approaches, is an application of the motivic nearby fiber of semistable degenerations. In particular, it extends the original result by Itenberg, Bertrand, and Bihan to real analytic families admitting a $\mathbb {Q}$-nonsingular tropical limit.
In this study, we consider the nonclassical diffusion equations with time-dependent memory kernels
\begin{equation*} u_{t} - \Delta u_t - \Delta u - \int_0^\infty k^{\prime}_{t}(s) \Delta u(t-s) ds + f( u) = g \end{equation*}
on a bounded domain $\Omega \subset \mathbb{R}^N,\, N\geq 3$. Firstly, we study the existence and uniqueness of weak solutions and then, we investigate the existence of the time-dependent global attractors $\mathcal{A}=\{A_t\}_{t\in\mathbb{R}}$ in $H_0^1(\Omega)\times L^2_{\mu_t}(\mathbb{R}^+,H_0^1(\Omega))$. Finally, we prove that the asymptotic dynamics of our problem, when $k_t$ approaches a multiple $m\delta_0$ of the Dirac mass at zero as $t\to \infty$, is close to the one of its formal limit
\begin{equation*}u_{t} - \Delta u_{t} - (1+m)\Delta u + f( u) = g. \end{equation*}
The main novelty of our results is that no restriction on the upper growth of the nonlinearity is imposed and the memory kernel $k_t(\!\cdot\!)$ depends on time, which allows for instance to describe the dynamics of aging materials.
Finding a common point in a finite intersection of sets, say, $C=\cap _{i=1}^{n} F(T_i)$, where each $T_i$ is a non-expansive-type mapping, is a central task in mathematics as it cuts across different areas of application, such as road design and medical image reconstruction. There are many algorithms for approximating solutions of such problems. Of particular interest in the implementation of these algorithms are cost and speed. This is due to the large computations to be performed at each step of the iterative process. One of the most efficient methods that optimizes the time of computation and cost of implementation is the asynchronous-parallel algorithm method. In this paper, we prove a weak convergence theorem for the asynchronous sequential inertial (ASI) algorithm (introduced by Heaton and Censor in [H. Heaton and Y. Censor, Asynchronous sequential inertial iterations for common fixed points problems with an application to linear systems, J. Glob. Optim. 74 (2019), 95–119.] ) for strictly pseudo-contractive mappings in Hilbert spaces. Under additional mild conditions, we also obtain a strong convergence theorem. Finally, we apply the ASI algorithm to solving convex minimization problems and Hammerstein integral equations.
In this article we study integral models of Shimura varieties, called Pappas–Rapoport splitting model, for ramified P.E.L. Shimira data. We study the special fiber and some stratification of these models, in particular we show that these are smooth and the Rapoport locus and the $\mu $-ordinary locus are dense, under some condition on the ramification.
We consider the following class of quasilinear Schrödinger equations proposed in plasma physics and nonlinear optics $-\Delta u+V(x)u+\frac {\kappa }{2}[\Delta (u^{2})]u=h(u)$ in the whole two-dimensional Euclidean space. We establish the existence and qualitative properties of standing wave solutions for a broader class of nonlinear terms $h(s)$ with the critical exponential growth. We apply the dual approach to obtain solutions in the usual Sobolev space $H^{1}(\mathbb {R}^{2})$ when the parameter $\kappa >0$ is sufficiently small. Minimax techniques, Trudinger–Moser inequality and the Nash–Moser iteration method play an essential role in establishing our results.
We consider a spherical particle levitating above a liquid bath owing to the Leidenfrost effect, where the vapour of either the bath or sphere forms an insulating film whose pressure supports the sphere’s weight. Starting from a reduced formulation based on a lubrication-type approximation, we use matched asymptotics to describe the morphology of the vapour film assuming that the sphere is small relative to the capillary length (small Bond number) and that the densities of the bath and sphere are comparable. We find that this regime is comprised of two formally infinite sequences of distinguished limits which meet at an accumulation point, the limits being defined by the smallness of an intrinsic evaporation number relative to the Bond number. These sequences of limits reveal a surprisingly intricate evolution of the film morphology with increasing sphere size. Initially, the vapour film transitions from a featureless morphology, where the thickness profile is parabolic, to a neck–bubble morphology, which consists of a uniform pressure bubble bounded by a narrow and much thinner annular neck. Gravity effects then become important in the bubble leading to sequential formation of increasingly smaller neck–bubble pairs near the symmetry axis. This process terminates when the pairs closest to the symmetry axis become indistinguishable and merge. Subsequently, the inner section of that merger transitions into a uniform-thickness film that expands radially, gradually squishing increasingly larger neck–bubble pairs into a region of localised oscillations sandwiched between the uniform film and what remains of the bubble whose radial extent is presently comparable to the uniform film; the neck–bubble pairs farther from the axis remain essentially intact. Ultimately, the uniform film gobbles up the largest outermost bubble, whereby the morphology simplifies to a uniform film bounded by localised oscillations. Overall, the asymptotic analysis describes the continuous evolution of the vapour film from a neck–bubble morphology typical of a Leidenfrost drop levitating above a flat solid substrate to a uniform-film morphology which resembles that in the case of a large liquid drop levitating above a liquid bath.
We investigate the geometry of Hermitian manifolds endowed with a compact Lie group action by holomorphic isometries with principal orbits of codimension one. In particular, we focus on a special class of these manifolds constructed by following Bérard-Bergery which includes, among the others, the holomorphic line bundles on $\mathbb {C}\mathbb {P}^{m-1}$, the linear Hopf manifolds and the Hirzebruch surfaces. We characterize their invariant special Hermitian metrics, such as balanced, Kähler-like, pluriclosed, locally conformally Kähler, Vaisman and Gauduchon. Furthermore, we construct new examples of cohomogeneity one Hermitian metrics solving the second-Chern–Einstein equation and the constant Chern-scalar curvature equation.
In this article, we show that the Abel–Jacobi images of the Heegner cycles over the Shimura curves constructed by Nekovar, Besser and the theta elements contructed by Chida–Hsieh form a bipartite Euler system in the sense of Howard. As an application of this, we deduce a converse to Gross–Zagier–Kolyvagin type theorem for higher weight modular forms generalising works of Wei Zhang and Skinner for modular forms of weight 2. That is, we show that if the rank of certain residual Selmer group is 1, then the Abel–Jacobi image of the Heegner cycle is nonzero in this residual Selmer group.
Let $G$ be a finite group. An element $g \in G$ is called a vanishing element in $G$ if there exists an irreducible character $\chi$ of $G$ such that $\chi (g)=0$. The size of a conjugacy class of $G$ containing a vanishing element is called a vanishing conjugacy class size of $G$. In this paper, we give an affirmative answer to the problem raised by Bianchi, Camina, Lewis and Pacifici about the solvability of finite groups with exactly one vanishing conjugacy class size.
The formula of the title relates p-adic heights of Heegner points and derivatives of p-adic L-functions. It was originally proved by Perrin-Riou for p-ordinary elliptic curves over the rationals, under the assumption that p splits in the relevant quadratic extension. We remove this assumption, in the more general setting of Hilbert-modular abelian varieties.
We investigate Carlson–Griffiths’ equidistribution theory of meormorphic mappings from a complete Kähler manifold into a complex projective algebraic manifold. By using a technique of Brownian motions developed by Atsuji, we obtain a second main theorem in Nevanlinna theory provided that the source manifold is of nonpositive sectional curvature. In particular, a defect relation follows if some growth condition is imposed.
We consider the near-critical Erdős–Rényi random graph G(n, p) and provide a new probabilistic proof of the fact that, when p is of the form $p=p(n)=1/n+\lambda/n^{4/3}$ and A is large,
where $\mathcal{C}_{\max}$ is the largest connected component of the graph. Our result allows A and $\lambda$ to depend on n. While this result is already known, our proof relies only on conceptual and adaptable tools such as ballot theorems, whereas the existing proof relies on a combinatorial formula specific to Erdős–Rényi graphs, together with analytic estimates.
In this paper, we consider the $T$- and $V$-versions, ${T_\tau }$ and ${V_\tau }$, of the irrational slope Thompson group ${F_\tau }$ considered in J. Burillo, B. Nucinkis and L. Reeves [An irrational-slope Thompson's group, Publ. Mat. 65 (2021), 809–839]. We give infinite presentations for these groups and show how they can be represented by tree-pair diagrams similar to those for $T$ and $V$. We also show that ${T_\tau }$ and ${V_\tau }$ have index-$2$ normal subgroups, unlike their original Thompson counterparts $T$ and $V$. These index-$2$ subgroups are shown to be simple.
We present a modification of the Depth first search algorithm, suited for finding long induced paths. We use it to give simple proofs of the following results. We show that the induced size-Ramsey number of paths satisfies $\hat{R}_{\mathrm{ind}}(P_n)\leq 5 \cdot 10^7n$, thus giving an explicit constant in the linear bound, improving the previous bound with a large constant from a regularity lemma argument by Haxell, Kohayakawa and Łuczak. We also provide a bound for the k-colour version, showing that $\hat{R}_{\mathrm{ind}}^k(P_n)=O(k^3\log^4k)n$. Finally, we present a new short proof of the fact that the binomial random graph in the supercritical regime, $G(n,\frac{1+\varepsilon}{n})$, contains typically an induced path of length $\Theta(\varepsilon^2) n$.
We prove an extension of the Kato–Saito unramified class field theory for smooth projective schemes over a finite field to a class of normal projective schemes. As an application, we obtain Bloch’s formula for the Chow groups of $0$-cycles on such schemes. We identify the Chow group of $0$-cycles on a normal projective scheme over an algebraically closed field to the Suslin homology of its regular locus. Our final result is a Roitman torsion theorem for smooth quasiprojective schemes over algebraically closed fields. This completes the missing p-part in the torsion theorem of Spieß and Szamuely.