To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The object of this paper is to solve the Saint-Venant torsion problem for those cross-sections with inclusions, which are such that the z-plane boundaries involved can be mapped into concentric circles in a complex ζ-plane by the transformation
with z´(ζ) ≠ 0 or ∞ within the cross-section. We shall consider both solid and hollow inclusions having different elastic rigidities μ. In the case of the solid inclusion we have to restrict the coefficients as to be zero for all negative s, but it is an advantage to leave this restriction to the end of the analysis, since the forms of certain coefficients in the two cases differ only in this respect.
has been established in many different ways; however, it seems that the following proof, a straightforward application of the theorem of residues, has not been observed before. Since
It is well known that every irrational number θ possesses an infinity of rational approximations p/q satisfying
It is also well known that there is a wide class of irrational numbers which admit of no approximations which are essentially better, namely those θ whose continued fractions have bounded partial quotients. For any such θ there is a positive number c such that all rational approximations satisfy
That these two subjects—the History of Science and the Psychology of Invention—are intimately connected with one another, is immediately evident and needs no explanation. Perhaps, however, it has not always been sufficiently appreciated. The recent Congress for the History of Science (Jerusalem, 1953) has given me an opportunity of trying to apply to the latter the data of the former.
Let q(x1; …, xn) be a positive definite quadratic form in n variables with real coefficients. Minkowski defined the successive minima of q as follows. Let S1 denote the least value assumed by q for integers x1 …, xn, not all zero, and let be a point at which this value is attained. Let S2 denote the least value assumed by q at integral points which are not multiples of x(1), and let x(2) be such a point at which this value is attained. Let S3 be the least value of q at integral points which are not linearly dependent on x(1) and x(2), and so on. We have
and it is easy to see that these numbers are uniquely defined, even though there may be several choices for the points x(1), …, x(n). The determinant N of the coordinates of the points x(1), …, x(n) is a non-zero integer. We denote by N (q) the least value of this integer (taken positively) for all permissible choices of the n minimal points, and by N′(q) its greatest value. Plainly N(q) and N′(q) are arithmetical invariants of q, that is, they are the same for two forms which are equivalent under a linear substitution with integral coefficients and determinant ±1.
The problem of the stability of a fluid rotating about an axis to an axisymmetric disturbance has been examined in the inviscid case by Rayleigh [1], who derived a simple criterion based on an analogy with the stability of plane stratified fluid of variable density. Later a complete discussion of the stability of viscous motion between rotating cylinders for small axisymmetric disturbances was given by G. I. Taylor [2]. More recently, the problem of magneto-hydrodynamic stability has claimed the attention of several workers, and, amongst other problems, the stability of a rotating fluid, when a constant magnetic field is applied in the direction of the axis of rotation, has been examined by Chandrasekhar [3]
As is well known the stability of viscous flow between two concentric rotating cylinders was first successfully treated both experimentally and theoretically by G. I. Taylor [1]. The mathematical problem underlying this classical investigation in hydrodynamic stability is the following:
The hydrodynamical equations allow the stationary solution
for the rotational velocity at a distance r from the axis of rotation, where A and B are constants related to the angular velocities Ω1 and Ω2 with which the inner and outer cylinders (of radii R1 and R2, R2 > R1) are rotated. Thus
In §§2, 3 a simple expression in finite terms is found for the small transverse displacement of a thin plane elastic plate due to a transverse force applied at an arbitrary point of the plate. The plate is clamped along, and is bounded internally by, the parabola CDE shown in Fig. 1.
A modified form of the centroid method used in factor analysis is described. Various large sample results are obtained, including a test of significance of the residuals. The method is compared with the corresponding form of maximum likelihood estimation and its efficiency is investigated. A numerical illustration is given of some of the foregoing theory.
The Bragg two-hologram method for eliminating the unwanted image in Diffraction Microscopy is here thoroughly examined. It is shown to be of general validity for objects containing both amplitude and phase-contrast terms.
Other two-hologram methods are briefly discussed. In principle any two sufficiently distinct holograms may be used, but the Bragg 2:1 focal ratio is the simplest. The pair of holograms at ±f is also of interest, since it allows moderate degrees of phase-contrast and amplitude-contrast terms in the original object to be separated. A “three-wavelength” technique for obtaining the Bragg records is briefly outlined.
A theorem, due to Dr Grace, about a configuration of lines in [3], has been shown by him to be a rewording of a theorem about a configuration of points and spheres in [4]; in this six spheres pass through each point. The present paper discusses the analogous configuration in which seven spheres pass through each point.
The two regular representations of quaternions give rise to a classical set of sixteen 4 × 4 matrices that have fairly recently reappeared in a paper by S. R. Milner. He uses them as the basis of a calculus of “Ɛ-numbers”, which he develops for the purpose of making physical applications. The covariantive nature of his calculus is, however, not always fully apparent, and raises some points of interest of which an examination is made in the present paper in terms of 3-dimensional projective geometry. The theory that emerges is the classical one of the collineations of projective 3-space that transform a quadric into itself, but the formulation is different from that of existing theories based on the same set of matrices and having the same or a similar geometrical background. For example, the present theory is quite different from that of 4-component spinors. The constants of multiplication γijk of quaternion algebra make their appearance in a generalized form and in a geometrical setting. In the final section an indication is given of possible generalizations to Riemannian geometry, and of the connection of the present work with the theory of Kähler manifolds of two complex dimensions.
The writer's theory of unimolecular dissociation rates, based on the treatment of the molecule as a harmonically vibrating system, is put in a form which covers quantum as well as classical mechanics. The classical rate formulæ are as before, and are also the high-temperature limits of the new quantum formulæ. The high-pressure first-order rate k∞ is found first from the Gaussian distribution of co-ordinates and momenta of harmonic systems, and is justified for the quantum-mechanical case by Bartlett and Moyal's phase-space distributions. This leads to a re-formulation of k∞ as a molecular dissociation probability averaged over a continuum of states, and to a general rate for any pressure of the gas.
The high-pressure rate k∞ is of the form ve-F/kT, where v and F depend, in the quantum case, on the temperature T; but v is always between the highest and lowest fundamental vibration frequencies of the molecule. Concerning the decline of the general rate k with pressure at fixed temperature, k/k∞ is to a certain approximation the same function of as was tabulated earlier for the classical case, apart from a constant factor changing the pressure scale in the quantum case.
By examining certain connections between the derivatives and the powers of a Lie algebra, bounds are obtained for the indices of nilpotent Lie algebras over an arbitrary field. The results are used to obtain bounds for the indices of solvable Lie algebras over a field of characteristic zero.
Certain types of 2n-dimensional Riemannian spaces admitting parallel fields of null n-planes are studied. These are known as Riemann extensions of conformal, projective or other classes of spaces of affine connection. The circumstances under which a 2n-dimensional Riemannian space admits two non-intersecting parallel fields of null n-planes are also discussed. Such spaces satisfy a condition similar to Kähler's condition in the theory of complex manifolds, and hence are called Kähler spaces. Necessary and sufficient conditions are found for a Kähler space to be a Riemann extension with respect to one of the parallel fields of null n-planes, and canonical forms are found for the metrics in the cases of Riemann extensions of conformal and projective spaces.
The logarithmetic L of a non-associative algebra or class of algebras S has been previously defined as the arithmetic of the indices of powers of the general element when indices are added (non-associatively) and multiplied by certain conventions similar to those of ordinary algebra. With respect to addition, L is a homomorphic image of the “most general” logarithmetic B, the free additive groupoid with one generator 1, and in the case of algebras of one operation is essentially the same as the free algebra in one variable on S. The definition is now extended so that L is defined when S is any subset of an algebra or class of subsets of algebras, with the result that every homomorph of B is a logarithmetic ; but a distinction has then to be drawn between closed logarithmetics in which as before both addition and multiplication are defined, and other logarithmetics in which there is only addition. L is its own logarithmetic (taken with respect to addition) only if L is closed. For subsets of palintropic algebras, L is necessarily closed.