To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We propose a conjectural list of Fano manifolds of Picard number $1$ with pseudoeffective normalised tangent bundles, which we prove in various situations by relating it to the complete divisibility conjecture of Francesco Russo and Fyodor L. Zak on varieties with small codegree. Furthermore, the pseudoeffective thresholds and, hence, the pseudoeffective cones of the projectivised tangent bundles of rational homogeneous spaces of Picard number $1$ are explicitly determined by studying the total dual variety of minimal rational tangents (VMRTs) and the geometry of stratified Mukai flops. As a by-product, we obtain sharp vanishing theorems on the global twisted symmetric holomorphic vector fields on rational homogeneous spaces of Picard number $1$.
For any algebraically closed field K and any endomorphism f of $\mathbb{P}^1(K)$ of degree at least 2, the automorphisms of f are the Möbius transformations that commute with f, and these form a finite subgroup of $\operatorname{PGL}_2(K)$. In the moduli space of complex dynamical systems, the locus of maps with nontrivial automorphisms has been studied in detail and there are techniques for constructing maps with prescribed automorphism groups that date back to Klein. We study the corresponding questions when K is the algebraic closure $\bar{\mathbb{F}}_p$ of a finite field. We use the classification of finite subgroups of $\operatorname{PGL}_2(\bar{\mathbb{F}}_p)$ to show that every finite subgroup is realizable as an automorphism group. To construct examples, we use methods from modular invariant theory. Then, we calculate the locus of maps over $\bar{\mathbb{F}}_p$ of degree 2 with nontrivial automorphisms, showing how the geometry and possible automorphism groups depend on the prime p.
Cooperative coordination in multi-agent systems has been a topic of interest in networked control theory in recent years. In contrast to cooperative agents, Byzantine agents in a network are capable to manipulate their data arbitrarily and send bad messages to neighbors, causing serious network security issues. This paper is concerned with resilient tracking consensus over a time-varying random directed graph, which consists of cooperative agents, Byzantine agents and a single leader. The objective of resilient tracking consensus is the convergence of cooperative agents to the leader in the presence of those deleterious Byzantine agents. We assume that the number and identity of the Byzantine agents are not known to cooperative agents, and the communication edges in the graph are dynamically randomly evolving. Based upon linear system analysis and a martingale convergence theorem, we design a linear discrete-time protocol to ensure tracking consensus almost surely in a purely distributed manner. Some numerical examples are provided to verify our theoretical results.
Two boundary value problems are solved for potential steady-state 2D Darcian seepage flows towards a line sink in a homogeneous isotropic soil from a ponded land surface, which is not flat but profiled. The aim of this shaping is ‘uniformisation’ of the velocity and travel time between this surface and a horizontal drain modelled by a line sink. The complex potential domain is a half-strip, which is mapped onto a reference plane. Either the velocity magnitude or a vertical coordinate along the land surface are control variables. Either a complexified velocity or complex physical coordinate is reconstructed by solving mixed boundary-value problems with the help of the Keldysh-Sedov formula via singular integrals, the kernel of which are the control functions. The flow nets, isotachs and breakthrough curves are found by computer algebra routines. A designed soil hump above the drain ameliorates an unwanted ‘preferential flow’ (shortcut) and improves leaching of salinised soil of a cropfield during a pre-cultivation season.
We call a packing of hyperspheres in n dimensions an Apollonian sphere packing if the spheres intersect tangentially or not at all; they fill the n-dimensional Euclidean space; and every sphere in the packing is a member of a cluster of $n+2$ mutually tangent spheres (and a few more properties described herein). In this paper, we describe an Apollonian packing in eight dimensions that naturally arises from the study of generic nodal Enriques surfaces. The $E_7$, $E_8$ and Reye lattices play roles. We use the packing to generate an Apollonian packing in nine dimensions, and a cross section in seven dimensions that is weakly Apollonian. Maxwell described all three packings but seemed unaware that they are Apollonian. The packings in seven and eight dimensions are different than those found in an earlier paper. In passing, we give a sufficient condition for a Coxeter graph to generate mutually tangent spheres and use this to identify an Apollonian sphere packing in three dimensions that is not the Soddy sphere packing.