To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For any algebraically closed field K and any endomorphism f of $\mathbb{P}^1(K)$ of degree at least 2, the automorphisms of f are the Möbius transformations that commute with f, and these form a finite subgroup of $\operatorname{PGL}_2(K)$. In the moduli space of complex dynamical systems, the locus of maps with nontrivial automorphisms has been studied in detail and there are techniques for constructing maps with prescribed automorphism groups that date back to Klein. We study the corresponding questions when K is the algebraic closure $\bar{\mathbb{F}}_p$ of a finite field. We use the classification of finite subgroups of $\operatorname{PGL}_2(\bar{\mathbb{F}}_p)$ to show that every finite subgroup is realizable as an automorphism group. To construct examples, we use methods from modular invariant theory. Then, we calculate the locus of maps over $\bar{\mathbb{F}}_p$ of degree 2 with nontrivial automorphisms, showing how the geometry and possible automorphism groups depend on the prime p.
Cooperative coordination in multi-agent systems has been a topic of interest in networked control theory in recent years. In contrast to cooperative agents, Byzantine agents in a network are capable to manipulate their data arbitrarily and send bad messages to neighbors, causing serious network security issues. This paper is concerned with resilient tracking consensus over a time-varying random directed graph, which consists of cooperative agents, Byzantine agents and a single leader. The objective of resilient tracking consensus is the convergence of cooperative agents to the leader in the presence of those deleterious Byzantine agents. We assume that the number and identity of the Byzantine agents are not known to cooperative agents, and the communication edges in the graph are dynamically randomly evolving. Based upon linear system analysis and a martingale convergence theorem, we design a linear discrete-time protocol to ensure tracking consensus almost surely in a purely distributed manner. Some numerical examples are provided to verify our theoretical results.
Two boundary value problems are solved for potential steady-state 2D Darcian seepage flows towards a line sink in a homogeneous isotropic soil from a ponded land surface, which is not flat but profiled. The aim of this shaping is ‘uniformisation’ of the velocity and travel time between this surface and a horizontal drain modelled by a line sink. The complex potential domain is a half-strip, which is mapped onto a reference plane. Either the velocity magnitude or a vertical coordinate along the land surface are control variables. Either a complexified velocity or complex physical coordinate is reconstructed by solving mixed boundary-value problems with the help of the Keldysh-Sedov formula via singular integrals, the kernel of which are the control functions. The flow nets, isotachs and breakthrough curves are found by computer algebra routines. A designed soil hump above the drain ameliorates an unwanted ‘preferential flow’ (shortcut) and improves leaching of salinised soil of a cropfield during a pre-cultivation season.
We call a packing of hyperspheres in n dimensions an Apollonian sphere packing if the spheres intersect tangentially or not at all; they fill the n-dimensional Euclidean space; and every sphere in the packing is a member of a cluster of $n+2$ mutually tangent spheres (and a few more properties described herein). In this paper, we describe an Apollonian packing in eight dimensions that naturally arises from the study of generic nodal Enriques surfaces. The $E_7$, $E_8$ and Reye lattices play roles. We use the packing to generate an Apollonian packing in nine dimensions, and a cross section in seven dimensions that is weakly Apollonian. Maxwell described all three packings but seemed unaware that they are Apollonian. The packings in seven and eight dimensions are different than those found in an earlier paper. In passing, we give a sufficient condition for a Coxeter graph to generate mutually tangent spheres and use this to identify an Apollonian sphere packing in three dimensions that is not the Soddy sphere packing.
Let K be an infinite field of characteristic $p>0$ and let $\lambda, \mu$ be partitions, where $\mu$ has two parts. We find sufficient arithmetic conditions on $p, \lambda, \mu$ for the existence of a nonzero homomorphism $\Delta(\lambda) \to \Delta (\mu)$ of Weyl modules for the general linear group $GL_n(K)$. Also, for each p we find sufficient conditions so that the corresponding homomorphism spaces have dimension at least 2.
Networked dynamical systems, i.e., systems of dynamical units coupled via nontrivial interaction topologies, constitute models of broad classes of complex systems, ranging from gene regulatory and metabolic circuits in our cells to pandemics spreading across continents. Most of such systems are driven by irregular and distributed fluctuating input signals from the environment. Yet how networked dynamical systems collectively respond to such fluctuations depends on the location and type of driving signal, the interaction topology and several other factors and remains largely unknown to date. As a key example, modern electric power grids are undergoing a rapid and systematic transformation towards more sustainable systems, signified by high penetrations of renewable energy sources. These in turn introduce significant fluctuations in power input and thereby pose immediate challenges to the stable operation of power grid systems. How power grid systems dynamically respond to fluctuating power feed-in as well as other temporal changes is critical for ensuring a reliable operation of power grids yet not well understood. In this work, we systematically introduce a linear response theory (LRT) for fluctuation-driven networked dynamical systems. The derivations presented not only provide approximate analytical descriptions of the dynamical responses of networks, but more importantly, also allow to extract key qualitative features about spatio-temporally distributed response patterns. Specifically, we provide a general formulation of a LRT for perturbed networked dynamical systems, explicate how dynamic network response patterns arise from the solution of the linearised response dynamics, and emphasise the role of LRT in predicting and comprehending power grid responses on different temporal and spatial scales and to various types of disturbances. Understanding such patterns from a general, mathematical perspective enables to estimate network responses quickly and intuitively, and to develop guiding principles for, e.g., power grid operation, control and design.
This modern introduction to operator theory on spaces with indefinite inner product discusses the geometry and the spectral theory of linear operators on these spaces, the deep interplay with complex analysis, and applications to interpolation problems. The text covers the key results from the last four decades in a readable way with full proofs provided throughout. Step by step, the reader is guided through the intricate geometry and topology of spaces with indefinite inner product, before progressing to a presentation of the geometry and spectral theory on these spaces. The author carefully highlights where difficulties arise and what tools are available to overcome them. With generous background material included in the appendices, this text is an excellent resource for researchers in operator theory, functional analysis, and related areas as well as for graduate students.
We determine all three-dimensional homogeneous and $1$-curvature homogeneous Lorentzian metrics which are critical for a quadratic curvature functional. As a result, we show that any quadratic curvature functional admits different non-Einstein homogeneous critical metrics and that there exist homogeneous metrics which are critical for all quadratic curvature functionals without being Einstein.
It is well known that the category of comodules over a flat Hopf algebroid is abelian but typically fails to have enough projectives, and more generally, the category of graded comodules over a graded flat Hopf algebroid is abelian but typically fails to have enough projectives. In this short paper, we prove that the category of connective graded comodules over a connective, graded, flat, finite-type Hopf algebroid has enough projectives. Applications to algebraic topology are given: the Hopf algebroids of stable co-operations in complex bordism, Brown–Peterson homology, and classical mod p homology all have the property that their categories of connective graded comodules have enough projectives. We also prove that categories of connective graded comodules over appropriate Hopf algebras fail to be equivalent to categories of graded connective modules over a ring.