To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In Part I of this paper we shall be concerned with the representation as convolutions of continuous linear operators which act on various function- spaces linked with a locally compact group and which commute with left — or right — translations; cf. the results in [12]. For completeness some known results are included whenever they follow from the general procedure. We have tried to follow simple general approaches as much as possible.
Equations of motion of a vibrating string are established in terms of the transverse and longitudinal displacements. These equations contain the terms of lowest order which are neglected in the classical treatment with vanishing amplitude. These extra terms lead to the natural modes being dependent on amplitude. By a simple procedure a solution of these equations is obtained which separates, as in the classical theory. The familiar circular functions are replaced by a Mathiew Function of position and a Jacobi elliptic function of time. Agreement with a previous study is shown.
The study of topological semirings, initiated by Selden [5], arises naturally from the theory of topological semigroups. It is of interest to take a known multiplication and investigate the possible additions. Selden has done this in [5] for several compact semirings.
In a semigroup S the set E of idempotents is partially ordered by the rule that e≦ƒ if and only if eƒ=e=ƒe. We say that S is an ω-semigroup if E={ei: i=0, 1, 2, …}, where
Bisimple ω-semigroups have been classified in [10]. From a group G and an endomorphism α of G a bisimple ω-semigroup S(G, α) can be constructed by a process described below in § 1: moreover, any bisimple ω-semigroup is isomorphic to one of this type.
The definition of a power-free group will be found in [1]. It is a partial algebraic system which, roughly speaking, may be thought of as a group in which (with the exception of the identity) squares and higher powers of an element are not defined.
It has been shown [1, Theorem 3.3] that the usual cancellation laws need not hold in a power-free group. When these laws do hold, the power-free group is called cancellative. In this paper we shall be solely concerned with cancellative power-free groups and the term ‘power-free group’ is to be understood to mean ‘cancellative power-free group’.
Let R be a commutative ring, with an identity element. It is the purpose of this note to establish conditions for an arbitrary but fixed ideal a of R to satisfy the distributive law
for all ideals b and c of R. In particular, in the Noetherian case, this will be related to the decomposition of a into prime ideals. We start with
Proposition 1. For a fixed ideal a in a commutative ring R with an identity element, the following conditions are equivalent.
The main object of this note is to show that a proof given by A. J. Macintyre [2] of a result on the overconvergence of partial sums of power series works more easily in the context of Dirichlet series. Applying this observation to the particular Dirichlet series Σane−ns, we can remove certain restrictions which Macintyre finds necessary in the direct treatment of power series.
In this paper two integrals involving E-functions are evaluated in terms of E-functions. The formulae to be established are:
where n is a positive integer,
and
where n is a positive integer,
and
the prime and the asterisk denoting that the factor sin {(s–s)π/2n} and the parameter βq+s–βq+s + 1 are omitted. The definitions and properties of MacRobert's E-function can be found in [1, pp. 348–352] and [3, pp. 203–206].
The set Dn of all n × n doubly-stochastic matrices is a semigroup with respect to ordinary matrix multiplication. This note is concerned with the determination of the maximal subgroups of Dn. It is shown that the number of subgroups is finite, that each subgroup is finite and is in fact isomorphic to a direct product of symmetric groups. These results are applied in § 3 to yield information about the least number of permutation matrices whose convex hull contains a given doubly-stochastic matrix.
A. Geddes [1, Theorem 3.3] has shown that the partial algebraic system which he has called a power-free group need not be cancellative. In other words, there exist power-free groups containing at least one element a with the property that ab can equal ac when b ≠ c. In the present paper we propose to study the structure of such non-cancellative power-free groups, and we shall in fact obtain a complete solution to this problem.
1.1. Let A = (aμν) be a normal triangular matrix, i.e., one for which aμμ ≠ 0 (μ ≥ 0), aμν = 0 (ν > μ).
where (i) 0≤m<n, (ii) Rμ>0 (μ≥0), (iii) K is a constant, depending on the matrix A and the sequence {Rμ}, but independent of m, n and the finite sequence {sν}.
Let H be any closed bounded convex set in En, and -H be its reflection in the origin. Then the vector sum K = H+ (−H) has the origin as centre and is called the difference set of H. Clearly every closed bounded convex set K with centre at the origin is the difference set of ½K. Excluding this trivial case, we define such a set K to be reducible if it is the difference set of some H which is not homothetic to K.
We wish to prove a theorem concerning the average values for the functions Ln(2u)e−u, 0 ≤x≤u < ∞, n=0,1,2, …, where Ln is the n-th Laguerre polynomial. Such functions will be called Laguerre functions with domain truncated at x.
By a permutation mapping in a finite projective plane π is meant a one-to-one mapping σ: P→l of the points of π onto the lines of π with the property that corresponding elements are incident. The simplest aspects of such mappings are discussed in this note.
In this paper solutions are given for two problems on the motion of a dusty gas, using the formulation of Saffman [1]. The gas containing a uniform distribution of dust, occupies the semi-infinite space above a rigid plane boundary. The motion induced in the dusty gas is considered in the two cases when the plane moves parallel to itself (i) in simple harmonic motion, and (ii) impulsively from rest with uniform velocity. In case (i) the change in phase velocity and the decay of oscillatory waves are noted as functions of the mass concentration of dust f. In case (ii) the problem is solved by use of the Laplace transform, some velocity distributions are calculated for f=0·2, and it is shown that the shear layer thickness is decreased by the factor (1+f)−1/2 at large times.
In this paper, solutions of the ordinary non-linear differential equation
are considered. This equation arises in the theory of both axisymmetric and two-dimensional viscous jets falling under gravity. In (1.1), y represents the first approximation to the velocity along the axis of symmetry, and x is a measure of the distance along this axis. Accordingly one of the conditions that the solution must satisfy is, that it cannot have a singularity at a finite value of x. The other condition to be imposed is that y must vanish at x = 0. For a derivation of this equation the reader is referred to Brown [1] or Clarke [2].
The dependence of the skin friction on the parameter β for the reversed flow solutions found by Stewartson of the Falkner-Skan equation f′′′ + ff″ + β (1−f′2)=0 is determined in the limit as β→0−.
Let A = {a1, …, an} and B={b1, …, bn} be two sets of n elements, and let R be a set of ordered pairs (ai, bi), or in other words a relation defined on A × B. By a map between A and B under R we mean a one-to-one correspondence between A and B such that if bi, corresponds to ai then (ai, bj) is one of the pairs in R.