To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In industrial applications of microwave heating, it has been observed that rather than the heating taking place uniformly, regions of high temperature, called hot-spots, tend to form. Depending on the industrial application, these can be either desirable or undesirable, and hence a theoretical understanding of the properties of the material that lead to hotspot formation is necessary. It has been shown in previous studies that hotspot formation is a product of the nonlinear dependence of microwave energy absorption by the material on temperature. It is shown in the present work that the conductivity of the material can have a significant effect on hotspot formation and can, if large enough, stop a hotspot from forming.
This paper considers a single-product industries, fixed capital model discussed briefly by Sraffa in Chaapter X if his book. The analysis is elementary, being based on the direct calculation of a certain martrix inverse. This generalises the approach adopted for circulating capital models. It also demonstrates that common economic and mathematical frameworks exist for both circulating and fixed capital models.
A formula is given for assigning sums to divergent series where the ratio of adjacent terms varies slowly along the series. This formula consistş of a weighted average of partial sums and is shown to be a general formula which can be easily calculated using a simple recurrence relation. It appears to be more powerful than a repeated Aitken or Shanks e1 process as long as the transformed series remains divergent and it is also compared with the Padé approximants. It is demonstrated on a factorial series, on a nearly geometric divergent series and for the extrapolation of a velocity formula for small amplitudes of motion.
A plane strain or plane stress configuration of an inextensible transversely isotropic linear elastic solid with the axis of symmetry in the plane, leads to a harmonic lateral displacement field in stretched coordinates. Various displacement and mixed displacement-traction boundary conditions yield standard boundary-value problems of potential theory for which uniqueness and existence of solutions are well established. However, the important case of prescribed tractions at each boundary point gives a non-standard potential problem involving linking of boundary values at opposite ends of chords parallel to the axis of material symmetry. Uniqueness and existence of solutions, within arbitrary rigid motions, are now established for the traction problem for general domains.
Here we discuss the stability and convergence of a quadrature method for Symm's integral equation on an open smooth arc. The method is an adaptation of an approach considered by Sloan and Burn for closed curves. Before applying the quadrature scheme, we use a cosine substitution to remove the endpoint singularity of the solution. The family of methods includes schemes with any order O(hp) of convergence.
How to obtain a workable initial guess to start an optimal control (control parametrization) algorithm is an important question. In particular, for a system of multi-link vertical planar robot arms moving under the effect of gravity and applied torques (which can exhibit chaotic behaviour), a non-workable initial guess of torques may cause integration failure regardless of what numerical packages are used. In this paper, we address this problem by introducing a simple and intuitive “Blind Man” algorithm. Theoretical justification as well as a numerical example is provided.
In this paper we use the theory of generalized geometric programming to develop a dual for a discrete time convex optimal control problem. This has interesting interpretational implications. Further it is shown that the variables in the dual problem are intimately related to the costate vector in the usual Maximum Principle approach.
This paper examines the role of import tariffs and consumption taxes when a product is supplied to a domestic market by a foreign monopoly via a subsidiary. It is assumed that there is no competition in the domestic market from internal suppliers. The home country is able to levy a profits tax on the subsidiary. The objective of our analysis is to determine the mix of tariff and consumption tax which simultaneously maximizes national welfare. We show that national welfare does not have an internal maximum, but attains its maximum on a boundary of the consumption tax–tariff parameter space. Furthermore, the optimal value of national welfare increases as the tariff decreases and the consumption tax increases. The results obtained generalize the results of an earlier paper in which national welfare was maximized with respect to either a tariff or consumption tax, but not both.
An interior layer problem posed by an elliptic partial differential equation of the type ε∇2φ - x∂φ/∂y = f(x, y, ε), 0 < ε ≪ 1, is investigated. This equation arises, for example, in the theory of rotating fluids and the important feature of the problem is an interior layer of width O(ε1/3) in which the solution has a relatively large magnitude.
The paper considers the simplest case which involves an interior layer, that is, where the domain is rectangular and f(x, y, ε) = εA for A constant. A leading approximation is derived and it is shown to be asymptotic to the exact solution in nearly all of the domain as ε → 0. The error estimates are derived using an a priori estimate for the solution of elliptic equations and a technique which optimizes the estimates is introduced. The applicability and limitations of the estimation technique are discussed briefly.
The existence, uniqueness and regularity of solutions are proved for the obstacle problem with semilinear elliptic partial differential equations of second order. Computationally effective algorithms are provided and application made to steady state problem for the logistic population model with diffusion and an obstacle to growth.
In this paper, we consider denumerable state continuous time Markov decision processes with (possibly unbounded) transition and cost rates under average criterion. We present a set of conditions and prove the existence of both average cost optimal stationary policies and a solution of the average optimality equation under the conditions. The results in this paper are applied to an admission control queue model and controlled birth and death processes.
This paper derives key equations for the determination of optimal control strategies in an important engineering application. A train travels from one station to the next along a track with continuously varying gradient. The journey must be completed within a given time and it is desirable to minimise fuel consumption. We assume that only certain discrete throttle settings are possible and that each setting determines a constant rate of fuel supply. This assumption is based on the control mechanism for a typical diesel-electric locomotive. For each setting the power developed by the locomotive is directly proportional to the rate of fuel supply. We assume a single level of braking acceleration. For each fixed finite sequence of control settings we show that fuel consumption is minimised only if the settings are changed when certain key equations are satisfied. The strategy determined by these equations is called a strategy of optimal type. We show that the equations can be derived using an intuitive limit procedure applied to corresponding equations obtained by Howlett [9, 10] in the case of a piecewise constant gradient. The equations will also be derived directly by extending the methods used by Howlett. We discuss a basic solution procedure for the key equations and apply the procedure to find a strategy of optimal type in appropriate specific examples.
Numerical solutions for travelling combustion waves of a solid material are sought. The algorithm of computation is based on a two-sided shooting method. It is found that there is a lower bound of the wave speed c, say c*, such that for c < c* no numerical solution can be constructed. This c* is a function of the activation energy of the medium.
The sufficient optimality conditions and duality results have recently been given for the following generalised convex programming problem:
where the funtion f and g satisfy
for some η: X0 × X0 → ℝn
It is shown here that a relaxation defining the above generalised convexity leads to a new class of multi-objective problems which preserves the sufficient optimality and duality results in the scalar case, and avoids the major difficulty of verifying that the inequality holds for the same function η(. , .). Further, this relaxation allows one to treat certain nonlinear multi-objective fractional programming problems and some other classes of nonlinear (composite) problems as special cases.