We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We are interested here in the Ramsey number r(T, C), where C is a complete k-uniform hypergraph and T is a “tree-like” k-graph. Upper and lower bounds are found for these numbers which lead, in some cases, to the exact value for r(T, C) and to a generalization of a theorem of Chváta1 on Ramsey numbers for graphs. In other cases we show that a determination of the exact values of r(T, C) would be equivalent to obtaining a complete solution to existence question for a certain class of Steiner systems.
Warren W. Wolfe obtained necessary conditions for the existence of orthogonal designs in terms of rational matrices. In this paper it is shown that these necessary conditions can be obtained in terms of integral matrices. In the integral form, Wolfe's theory is more useful in the construction of orthogonal designs.
Some sufficient conditions for the reconstructability of separable graphs are given proceeding along the lines suggested by Bondy, Greenwell and Hemminger. It is shown that the structure and automorphism group of a central block plays an important role in the reconstruction.
A set with a relation is isomorphic to a group quotient under the condition described as weak homogeneity, and to the quotient of a group with relation preserved by right and left translations if the homogeneity is strengthened. A method of constructing these group quotients and, furthermore, all such very homogeneous spaces, is described and an illustrative example given.
A random rooted labelled tree on n vertices has asymptotically the same shape as a branching-type process, in which each generation of a branching process with Poisson family sizes, parameter one, is supplemented by a single additional member added at random to one of the families in that generation. In this note we use this probabilistic representation to deduce the asymptotic distribution of the distance from the root to the nearest endertex other than itself.
We characterize all finite linear spaces with p ≤ n2 points where n ≥ 8 for p ≠ n2 − 1 and n ≥ 23 for p = n2−1, and the line range is {n−1, n, n+1}. All such linear spaces are shown to be embeddable in finite projective planes of order a function of n. We also describe the exceptional linear spaces arising from p < n2−1 and n ≥ 4.
Cubic Moore graphs of diameter k on 3.2k−2 vertices do not exist for k > 2. This paper exhibits the first known case of nonexistence for generalized cubic Moore graphs when the number of vertices is just less than the critical number for a Moore graph: the generalized Moore graph on 44 vertices does not exist.
We contine our study of the following combinatorial problem: What is the largest integer N = N (t, m, p) for which there exists a set of N people satisfying the following conditions: (a) each person speaks t languages, (b) among any m people there are two who speak a common language and (c) at most p speak a common language. We obtain bounds for N(t, m, p) and evaluate N(3, m, p) for all m and infintely many values of p.
The self-complement index s(G) of a graph G is the maximum order of an induced subgraph of G whose complement is also induced in G. This new graphical invariant provides a measure of how close a given graph is to being selfcomplementary. We establish the existence of graphs G of order p having s(G) = n for all positive integers n < p. We determine s(G) for several families of graphs and find in particular that when G is a tree, s(G) = 4 unless G is a star for which s(G) = 2.
In this paper we obtain matroid extensions of two important results in graph theory, namely the 4-colour theorem of Appel and Haken [1] and the 8-flow theorem of Jaeger [4]. As a corollary we prove that any bridgeless graph with no subgraph contractible to K3,3 has a nowhere zero 4-flow. These results depend heavily on a remarkable theory of splitters developed recently by Seymour [8], [9].
A square matrix A is transposable if P(RA) = (RA)T for some permutation matrices p and R, and symmetrizable if (SA)T = SA for some permutation matrix S. In this paper we find necessary and sufficient conditions on a permutation matrix P so that A is always symmetrizable if P(RA) = (RA)T for some permutation matrix R.
A Bhaskar Rao design is obtained from the incidence matrix of a partially balanced incomplete block design with m associate classes by negating some elements of the matrix in such a way that the inner product of rows α and β is ci if α and β are ith associates. In this paper we use nested designs constructed from unions of cyclotomic classes to give Bhaskar Rao designs.
A recursive method of A. C. Mukhopadhay is used to obtain several new infinite classes of Hadamard matrices. Unfortunately none of these constructions give previously unknown Hadamard matrices of order <40,000.
We consider the following problem arising in agricultural statistics. Suppose that a large number of plants are set out on a regular grid, which may be triangular, square or hexagonal, and that among these plants, half are to be given one and half the other of two possible treatments. For the sake of statistical balance, we require also that, if one plant in every k plants has i of its immediate neighbours receiving the same treatment as itself, then k is constant over all possible values of i. For square and triangular grids, there exist balanced arrays of finite period in each direction, but for the hexagonal grid, we show that no such balanced array can exist. Several related questions are discussed.
It is well known that in any (v, b, r, k, λ) resolvable balanced incomplete block design that b≧ ν + r − l with equality if and only if the design is affine resolvable. In this paper, we show that a similar inequality holds for resolvable regular pairwise balanced designs ((ρ, λ)-designs) and we characterize those designs for which equality holds. From this characterization, we deduce certain results about block intersections in (ρ, λ)-designs.
Let 〈fn≧0 be nonnegative real numbers with generating function f(x) = Σfnxn. Assume f(x) has the following properties: it has a finite nonzero radius of convergence x0 with its only singularity on the circle of convergence at x = x0 and f(x0) converges to y0; y = f(x) satisfies an analytic identity F(x, y) = 0 near (x0, y0); Fy(l) (x0, y0)= 0, 0 ≦ i < k and Fy(k) (x0, y0) ≠ 0. There are constants γ, a positive rational, and c such that fn~cx0−n n−(1 +ggr;). Furthermore, we show (i) in all cases how to determine γ and c from f(x) and (ii) in certain cases how to determine them from F(x, y).
A permutation π of the set {1, 2, …, n} is four-discordant if π(i) ≢ i, i+ 1, i + 2, i +3 (mod n) for 1 ≦i ≦ n. Generating functions for rook polynomials associated with four-discordant permutations are derived. Hit polynomials associated with four-discordant permutations are studied. Finally, it is shown that the leading coefficients of these rook polynomials form a “tribonacci” sequence which is a generalized Fibonacci sequence.
Let P be a finite, connected partially ordered set containing no crowns and let Q be a subset of P. Then the following conditions are equivalent: (1) Q is a retract of P; (2) Q is the set of fixed points of an order-preserving mapping of P to P; (3) Q is obtained from P by dismantling by irreducibles.