We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let the word “graph” be used in the sense of a countable, connected, simple graph with at least one vertex. We write Qn and Ocn for the graphs associated with the n-cube Qn and the n-octahedron Ocn respectively. In a previous paper (Dekker, 1981) we generalized Qn and Qn to a graph QN and a cube QN, for any nonzero recursive equivalence type N. In the present paper we do the same for Ocn and Ocn. We also examine the nature of the duality between QN and OcN, in case N is an infinite isol. There are c RETs, c denoting the cardinality of the continuum.
Recently, we have introduced the notion of stable permutations in a Latin rectangle L(r×c) of r rows and c columns. In this note, we prove that the set of all stable permutations in L (r×c) forms a distributive lattice which is Boolean if and only if c ≤ 2.
An equidistant permutation array is a ν × r array A(r, λ;ν) defined on a r-set X such that every row of A is a permutation of X and any two distinct rows agree in precisely λ common columns. Define In this paper, we show that where n = r − λ. Certain results pertaining to irreducible equidistant permutation arrays are also established.
A directed packing of pairs into quadruples is a collection of 4-subsets of a set of cardinality ν with the property that each ordered pair of elements appears at most once in a 4-subset (or block). The maximal number of blocks with this property is denoted by DD(2, 4, ν). Such a directed packing may also be thought of as a packing of transtivie tournaments into the complete directed graph on ν points. It is shown that, for all but a finite number of values of ν, DD(2, 4, ν) is maximal.
The simple twills on n harnesses can be classified according to the number of breaks that they possess. An algorithm is detailed for determining these twills and some sample listings given. A formula is derived which evaluates the total number of n-harness twills with a specified number of breaks, and hence also the total possible number of twills on n harnesses. Also the balanced twills on n harnesses are enumerated.
A Latin square is considered to be a set of n2 cells with three block systems. An automorphisni is a permutation of the cells which preserves each block system. The automorphism group of a Latin Square necessarily has at least 4 orbits on unordered pairs of cells if n < 2. It is shown that there are exactly 4 orbits if and only if the square is the composition table of an elementary abelian 2-group or the cclic group of order 3.
A permutation group G on a finite set Ω is always exposable if whenever G stabilises a switching class of graphs on Ω, G fixes a graph in the switching class. Here we consider the problem: given a finite group G, which permutation representations of G are always exposable? We present solutions to the problem for (i) 2-generator abelian groups, (ii) all abelian groups in semiregular representations. (iii) generalised quaternion groups and (iv) some representations of the symmetric group Sn.
From an integer-valued function f we obtain, in a natural way, a matroid Mf on the domain of f. We show that the class of matroids so obtained is closed under restriction, contraction, duality, truncation and elongation, but not under direct sum. We give an excluded-minor characterization of and show that consists precisely of those transversal matroids with a presentation in which the sets in the presentation are nested. Finally, we show that on an n-set there are exactly 2n members of .
The purpose of this note is to determine the automorphism group of the doubly regular tournament of Szekeres type, and to use it to show that the corresponding skew Hadamard matrix H of order 2(q + 1), where q ≡5(mod 8) and q > 5, is not equivalent to the skew Hadamard matrix H(2q + 1) of quadratic residue type when 2q + 1 is a prime power.
S. T. Hedetniemi and P. J. Slater have shown that if G is a triangle-free connected graph with at least three vertices, then
where K(G) is the clique graph of G and K2(G) = K(K(G)) is the first iterated clique graph. In this paper, we generalize the above result to a wider class of graphs.
The representation theory of Clifford algebras has been used to obtain information on the possible orders of amicable pairs of orthogonal designs on given numbers of variables. If, however, the same approach is tried on more complex systems of orthogonal designs, such as product designs and amicable triples, algebras which properly generalize the Clifford algebras are encountered. In this paper a theory of such generalizations is developed and applied to the theory of systems of orthogonal designs, and in particular to the theory of product designs.
Some generalizations of Sperner's theorem and of the LYM inequality are given to the case when A1,… At are t families of subsets of {1,…,m} such that a set in one family does not properly contain a set in another.
We determine the limiting distribution of the distance from the root of a tree to any nearest endnode of the tree (other than the root) for certain families of rooted trees.
Frames have been defined as a certain type of generalization of Room square. Frames have proven useful in the construction of Room squares, in particular, skew Room squares.
We generalize the definition of frame and consider the construction of Room squares and skew Room squares using these more general frames.
We are able to construct skew Room squares of three previously unknown sides, namely 93, 159, and 237. This reduces the number of unknown sides to four: 69, 87, 95 and 123. Also, using this construction, we are able to give a short proof of the existence of all skew Room squares of (odd) sides exceeding 123.
Finally, this frame construction is useful for constructing Room squares with subsquares. We can also construct Room squares “missing” subsquares of sides 3 and 5. The “missing” subsquares of sides 3 and 5 do not exist, so these incomplete Room squares cannot be completed to Room squares.
We show that the problem of settling the existence of an n × n Hadamard matrix, where n is divisible by 4, is equivalent to that of finding the cardinality of a smallest set T of 4-circuits in the complete bipartite graph K n, n, such that T contains at least one circuit of each copy of K2,3 in Kn, n.
Let t, m > 2 and p > 2 be positive integers and denote by N(t, m, p) the largest integer for which there exists a t-uniform hypergraph with N (not necessarily distinct) edges and having no independent set of edges of size m and no vertex of degree exceeding p. In this paper we complete the determination of N(t, m, 3) and obtain some new bounds on N(t, 2, p).
We discuss the problem of constructing large graceful trees from smaller ones and provide a partial answer in the case of the product tree Sm {g} by way of a sample of sufficient conditions on g. Interlaced trees play an important role as building blocks in our constructions, although the resulting valuations are not always interlaced.
Let g(n, m) denote the maximal number of distinct rows in any (0, 1 )-matrix with n columns, rank < n, – 1, and all row sums equal to m. This paper determines g(n, m) in all cases:
In addition, it is shown that if V is a k-dimensional vector subspace of any vector space, then V contains at most 2k vectors all of whose coordinates are 0 or 1.