To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper concerns the energy conservation for the weak solutions of the compressible Navier–Stokes equations. Assume that the density is positively bounded, we work on the regularity assumption on the gradient of the velocity, and establish a Lp–Ls type condition for the energy equality to hold in the distributional sense in time. We mention that no regularity assumption on the density derivative is needed any more.
We characterize, using commuting zero-flux homologies, those volume-preserving vector fields on a 3-manifold that are steady solutions of the Euler equations for some Riemannian metric. This result extends Sullivan’s homological characterization of geodesible flows in the volume-preserving case. As an application, we show that steady Euler flows cannot be constructed using plugs (as in Wilson’s or Kuperberg’s constructions). Analogous results in higher dimensions are also proved.
Steady two-dimensional fluid flow over an obstacle is solved using complex variable methods. We consider the cases of rectangular obstacles, such as large boulders, submerged in a potential flow. These may arise in geophysics, marine and civil engineering. Our models are applicable to initiation of motion that may result in subsequent transport. The local flow depends on the obstacle shape, slowing down in confining corners and speeding up in expanding corners. The flow generates hydrodynamic forces, drag and lift, and their associated moments, which differ around each face. Our model replaces the need for ill-defined drag and lift coefficients with geometry-dependent functions. We predict smaller flow velocities to initiate motion. We show how a joint-bound boulder can be transported against gravity, and analyse the influence of a wake region behind an isolated boulder.
A system of two coupled nonlinear spectral transport equations is derived for two obliquely interacting narrowband Gaussian random surface wavetrains, slowly varying in space and time. Using these two equations, stability analysis is performed for two initially homogeneous wave spectra, subject to unidirectional perturbations. We observe that the effect of randomness produces a decrease in the growth rate of instability, but it is higher than the growth for a single wavetrain. The growth rate of instability is observed to decrease with the increase in spectral width.
Explicit solutions are rarely available for water wave scattering problems. An analytical procedure is presented here to solve the boundary value problem associated with wave scattering by a complete vertical porous barrier with two gaps in it. The original problem is decomposed into four problems involving vertical solid barriers. The decomposed problems are solved analytically by using a weakly singular integral equation. Explicit expressions are obtained for the scattering amplitudes and numerical results are presented. The results obtained can be used as a benchmark for other wave scattering problems involving complex geometrical structures.
The effect of uniform wind flow on modulational instability of two crossing waves is studied here. This is an extension of an earlier work to the case of a finite-depth water body. Evolution equations are obtained as a set of three coupled nonlinear equations correct up to third order in wave steepness. Figures presented in this paper display the variation in the growth rate of instability of a pair of obliquely interacting uniform wave trains with respect to the changes in the air-flow velocity, depth of water medium and the angle between the directions of propagation of the two wave packets. We observe that the growth rate of instability increases with the increase in the wind velocity and the depth of water medium. It also increases with the decrease in the angle of interaction of the two wave systems.
This paper is devoted to the study of the long wave approximation for water waves under the influence of the gravity and a Coriolis forcing. We start by deriving a generalization of the Boussinesq equations in one (spatial) dimension and we rigorously justify them as an asymptotic model of water wave equations. These new Boussinesq equations are not the classical Boussinesq equations: a new term due to the vorticity and the Coriolis forcing appears that cannot be neglected. We study the Boussinesq regime and derive and fully justify different asymptotic models when the bottom is flat: a linear equation linked to the Klein–Gordon equation admitting the so-called Poincaré waves; the Ostrovsky equation, which is a generalization of the Korteweg–de Vries (KdV) equation in the presence of a Coriolis forcing, when the rotation is weak; and the KdV equation when the rotation is very weak. Therefore, this work provides the first mathematical justification of the Ostrovsky equation. Finally, we derive a generalization of the Green–Naghdi equations in one spatial dimension for small topography variations and we show that this model is consistent with the water wave equations.
Simplified models like the shallow water equations (SWE) are commonly adopted for describing a wide range of free surface flow problems, like flows in rivers, lakes, estuaries, or coastal areas. In the literature, numerical methods for the SWE are mostly mesh-based. However, this macroscopic approach is unable to accurately represent the complexity of flows near coastlines, where waves nearly break. This fact prompted the idea of coupling the mesh-based SWE model with a meshless particle method for solving the Euler equations. In a previous paper, a method to couple the staggered scheme SWE and the smoothed particle hydrodynamics (SPH) Euler equations was developed and discussed. In this article, this coupled model is used for simulating solitary wave run-up on a sloping beach. The results show strong agreement with the experimental data of Synolakis. Simulations of wave overtopping over a seawall were also performed.
We extend the evolution equation for weak nonlinear gravity–capillary waves by including fifth-order nonlinear terms. Stability properties of a uniform Stokes gravity–capillary wave train is studied using the evolution equation obtained here. The region of stability in the perturbed wave-number plane determined by the fifth-order evolution equation is compared with that determined by third- and fourth-order evolution equations. We find that if the wave number of longitudinal perturbations exceeds a certain critical value, a uniform gravity–capillary wave train becomes unstable. This critical value increases as the wave steepness increases.
The Shan-Chen multiphase lattice Boltzmann model (LBM) coupled with Carnahan-Starling real-gas equation of state (C-S EOS)was proposed to simulate three-dimensional (3D) cavitation bubbles. Firstly, phase separation processes were predicted and the inter-phase large density ratio over 2×104 was captured successfully. The liquid-vapor density ratio at lower temperature is larger. Secondly, bubble surface tensions were computed and decreased with temperature increasing. Thirdly, the evolution of creation and condensation of cavitation bubbles were obtained. The effectiveness and reliability of present method were verified by energy barrier theory. The influences of temperature, pressure difference and critical bubble radius on cavitation bubbles were analyzed systematically. Only when the bubble radius is larger than the critical value will the cavitation occur, otherwise, cavitation bubbles will dissipate due to condensation. According to the analyses of radius change against time and the variation ratio of bubble radius, critical radius is larger under lower temperature and smaller pressure difference condition, thus bigger seed bubbles are needed to invoke cavitation. Under higher temperature and larger pressure difference, smaller seed bubbles can invoke cavitation and the expanding velocity of cavitation bubbles are faster. The cavitation bubble evolution including formation, developing and collapse was captured successfully under various pressure conditions.
A well-posedness theory for the initial-value problem for hydroelastic waves in two spatial dimensions is presented. This problem, which arises in numerous applications, describes the evolution of a thin elastic membrane in a two-dimensional (2D) potential flow. We use a model for the elastic sheet that accounts for bending stresses and membrane tension, but which neglects the mass of the membrane. The analysis is based on a vortex sheet formulation and, following earlier analyses and numerical computations in 2D interfacial flow with surface tension, we use an angle–arclength representation of the problem. We prove short-time well-posedness in Sobolev spaces. The proof is based on energy estimates, and the main challenge is to find a definition of the energy and estimates on high-order non-local terms so that an a priori bound can be obtained.
We derive a higher order nonlinear evolution equation for a broader bandwidth three-dimensional capillary–gravity wave packet, in the presence of a surface current produced by an internal wave. Instead of a set of coupled equations, a single nonlinear evolution equation is obtained by eliminating the velocity potential for the wave-induced slow motion. Finally, the equation is expressed in an integro-differential equation form, similar to Zakharov’s integral equation. Using the evolution equation derived here, we show that the two sidebands of a surface capillary–gravity wave get excited as a result of resonance with an internal wave, all propagating in the same direction. It is also shown that surface waves can grow exponentially with time at the expense of the energy of the internal wave.
We propose an all regime Lagrange-Projection like numerical scheme for the gas dynamics equations. By all regime, we mean that the numerical scheme is able to compute accurate approximate solutions with an under-resolved discretization with respect to the Mach number M, i.e. such that the ratio between the Mach number M and the mesh size or the time step is small with respect to 1. The key idea is to decouple acoustic and transport phenomenon and then alter the numerical flux in the acoustic approximation to obtain a uniform truncation error in term of M. This modified scheme is conservative and endowed with good stability properties with respect to the positivity of the density and the internal energy. A discrete entropy inequality under a condition on the modification is obtained thanks to a reinterpretation of the modified scheme in the Harten Lax and van Leer formalism. A natural extension to multi-dimensional problems discretized over unstructured mesh is proposed. Then a simple and efficient semi implicit scheme is also proposed. The resulting scheme is stable under a CFL condition driven by the (slow) material waves and not by the (fast) acoustic waves and so verifies the all regime property. Numerical evidences are proposed and show the ability of the scheme to deal with tests where the flow regime may vary from low to high Mach values.
We study the numerical performance of a continuous data assimilation (downscaling) algorithm, based on ideas from feedback control theory, in the context of the two-dimensional incompressible Navier-Stokes equations. Our model problem is to recover an unknown reference solution, asymptotically in time, by using continuous-in-time coarse-mesh nodal-point observational measurements of the velocity field of this reference solution (subsampling), as might be measured by an array of weather vane anemometers. Our calculations show that the required nodal observation density is remarkably less than what is suggested by the analytical study; and is in fact comparable to the number of numerically determining Fourier modes, which was reported in an earlier computational study by the authors. Thus, this method is computationally efficient and performs far better than the analytical estimates suggest.
This paper concerns the computation of nonlinear crest distributions for irregular Stokes waves, and a numerical algorithm based on the Fast Fourier Transform (FFT) technique has been developed for carrying out the nonlinear computations. In order to further improve the computational efficiency, a new Transformed Rayleigh procedure is first proposed as another alternative for computing the nonlinear wave crest height distributions, and the corresponding computer code has also been developed. In the proposed Transformed Rayleigh procedure, the transformation model is chosen to be a monotonic exponential function, calibrated such that the first three moments of the transformed model match the moments of the true process. The numerical algorithm based on the FFT technique and the proposed Transformed Rayleigh procedure have been applied for calculating the wave crest distributions of a sea state with a Bretschneider spectrum and a sea statewith the surface elevation datameasured at the Poseidon platform. It is demonstrated in these two cases that the numerical algorithm based on the FFT technique and the proposed Transformed Rayleigh procedure can offer better predictions than those from using the empirical wave crest distribution models. Meanwhile, it is found that our proposed Transformed Rayleigh procedure can compute nonlinear crest distributions more than 25 times faster than the numerical algorithm based on the FFT technique.
Large-scale low-pressure systems in the atmosphere are occasionally observed to possess Kelvin–Helmholtz fingers, and an example is shown in this paper. However, these structures are hundreds of kilometres long, so that they are necessarily affected strongly by nonlinearity. They are evidently unstable and are observed to dissipate after a few days.
A model for this phenomenon is presented here, based on the usual $f$-plane equations of meteorology, assuming an atmosphere governed by the ideal gas law. Large-amplitude perturbations are accounted for, by retaining the equations in their nonlinear forms, and these are then solved numerically using a spectral method. Finger formation is modelled as an initial perturbation to the $n$th Fourier mode, and the numerical results show that the fingers grow in time, developing structures that depend on the particular mode. Results are presented and discussed, and are also compared with the predictions of the ${\it\beta}$-plane theory, in which changes of the Coriolis acceleration with latitude are included. An idealized vortex in the northern hemisphere is considered, but the results are at least in qualitative agreement with an observation of such systems in the southern hemisphere.
The nonlinear and weakly dispersive Serre equations contain higher-order dispersive terms. These include mixed spatial and temporal derivative flux terms which are difficult to handle numerically. These terms can be replaced by an alternative combination of equivalent temporal and spatial terms, so that the Serre equations can be written in conservation law form. The water depth and new conserved quantities are evolved using a second-order finite-volume scheme. The remaining primitive variable, the depth-averaged horizontal velocity, is obtained by solving a second-order elliptic equation using simple finite differences. Using an analytical solution and simulating the dam-break problem, the proposed scheme is shown to be accurate, simple to implement and stable for a range of problems, including flows with steep gradients. It is only slightly more computationally expensive than solving the shallow water wave equations.