We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let C be a convex body (i.e., a proper closed convex subset with nonempty interior) in a normed space X. We consider four moduli of local uniform rotundity for C at a given point $x\in \partial C$, that extend in a natural way the corresponding notions for the unit ball $B_X$, and we prove that they all coincide. This extends a known result of J. Daneš from 1976 concerning the particular case when $C=B_X$.
Chan and Seceleanu have shown that if a weighted shift operator on $\ell^p(\mathbb{Z})$, $1\leq p \lt \infty$, admits an orbit with a non-zero limit point then it is hypercyclic. We present a new proof of this result that allows to extend it to very general sequence spaces. In a similar vein, we show that, in many sequence spaces, a weighted shift with a non-zero weakly sequentially recurrent vector has a dense set of such vectors, but an example on $c_0(\mathbb{Z})$ shows that such an operator is not necessarily hypercyclic. On the other hand, we obtain that weakly sequentially hypercyclic weighted shifts are hypercyclic. Chan and Seceleanu have, moreover, shown that if an adjoint multiplication operator on a Bergman space admits an orbit with a non-zero limit point then it is hypercyclic. We extend this result to very general spaces of analytic functions, including the Hardy spaces.
In this paper, we prove a new uncertainty principle for functions with radial symmetry by differentiating a radial version of the Stein–Weiss inequality. The difficulty is to prove the differentiability in the limit of the best constant that unlike the general case it is not known. We provide also an integral alternative formula for the logarithmic weight $(\log|\xi|)$ in Fourier domain.
Let $\varphi : B_d\to \mathbb {D}$, $d\ge 1$, be a holomorphic function, where $B_d$ denotes the open unit ball of $\mathbb {C}^d$ and $\mathbb {D}= B_1$. Let $\Theta : \mathbb {D} \to \mathbb {D}$ be an inner function, and let $K^p_\Theta $ denote the corresponding model space. For $p>1$, we characterize the compact composition operators $C_\varphi : K^p_\Theta \to H^p(B_d)$, where $H^p(B_d)$ denotes the Hardy space.
Stochastic embeddings of finite metric spaces into graph-theoretic trees have proven to be a vital tool for constructing approximation algorithms in theoretical computer science. In the present work, we build out some of the basic theory of stochastic embeddings in the infinite setting with an aim toward applications to Lipschitz free space theory. We prove that proper metric spaces stochastically embedding into $\mathbb {R}$-trees have Lipschitz free spaces isomorphic to $L^1$-spaces. We then undergo a systematic study of stochastic embeddability of Gromov hyperbolic metric spaces into $\mathbb {R}$-trees by way of stochastic embeddability of their boundaries into ultrametric spaces. The following are obtained as our main results: (1) every snowflake of a compact, finite Nagata-dimensional metric space stochastically embeds into an ultrametric space and has Lipschitz free space isomorphic to $\ell ^1$, (2) the Lipschitz free space over hyperbolic n-space is isomorphic to the Lipschitz free space over Euclidean n-space and (3) every infinite, finitely generated hyperbolic group stochastically embeds into an $\mathbb {R}$-tree, has Lipschitz free space isomorphic to $\ell ^1$, and admits a proper, uniformly Lipschitz affine action on $\ell ^1$.
This article explores the notions of $\mathcal {F}$-transitivity and topological $\mathcal {F}$-recurrence for backward shift operators on weighted $\ell ^p$-spaces and $c_0$-spaces on directed trees, where $\mathcal {F}$ represents a Furstenberg family of subsets of $\mathbb {N}_0$. In particular, we establish the equivalence between recurrence and hypercyclicity of these operators on unrooted directed trees. For rooted directed trees, a backward shift operator is hypercyclic if and only if it possesses an orbit of a bounded subset that is weakly dense.
A finite-dimensional normed space is an inner product space if and only if the set of norming vectors of any endomorphism is a linear subspace. This theorem was proved by Sain and Paul for real scalars. In this paper, we give a different proof which also extends to the case of complex scalars.
In this paper, we present a characterization of strong subdifferentiability of the norm of bounded linear operators on $\ell _p$ spaces, $1\leq p<\infty $. Furthermore, we prove that the set of all bounded linear operators in ${B}(\ell _p, \ell _q)$ for which the norm of ${B}(\ell _p, \ell _q)$ is strongly subdifferentiable is dense in ${B}(\ell _p, \ell _q)$. Additionally, we present a characterization of Fréchet differentiability of the norm of bounded linear operators from $\ell _p$ to $\ell _q$, where $1 < p, q < \infty $. Applying this result, we will show that the Fréchet differentiability and the Gateaux differentiability of the norm of bounded linear operators on $\ell _p$ spaces coincide, extending a known theorem regarding the operator norm on Hilbert spaces.
We construct a reflexive Banach space $X_{\mathcal {D}}$ with an unconditional basis such that all spreading models admitted by normalized block sequences in $X_{\mathcal {D}}$ are uniformly equivalent to the unit vector basis of $\ell _1$, yet every infinite-dimensional closed subspace of $X_{\mathcal {D}}$ fails the Lebesgue property. This is a new result in a program initiated by Odell in 2002 concerning the strong separation of asymptotic properties in Banach spaces.
We introduce two new notions called the Daugavet constant and Δ-constant of a point, which measure quantitatively how far the point is from being Daugavet point and Δ-point and allow us to study Daugavet and Δ-points in Banach spaces from a quantitative viewpoint. We show that these notions can be viewed as a localized version of certain global estimations of Daugavet and diametral local diameter two properties such as Daugavet indices of thickness. As an intriguing example, we present the existence of a Banach space X in which all points on the unit sphere have positive Daugavet constants despite the Daugavet indices of thickness of X being zero. Moreover, using the Daugavet and Δ-constants of points in the unit sphere, we describe the existence of almost Daugavet and Δ-points, as well as the set of denting points of the unit ball. We also present exact values of the Daugavet and Δ-constant on several classical Banach spaces, as well as Lipschitz-free spaces. In particular, it is shown that there is a Lipschitz-free space with a Δ-point, which is the furthest away from being a Daugavet point. Finally, we provide some related stability results concerning the Daugavet and Δ-constant.
We use a special tiling for the hyperbolic d-space $\mathbb {H}^d$ for $d=2,3,4$ to construct an (almost) explicit isomorphism between the Lipschitz-free space $\mathcal {F}(\mathbb {H}^d)$ and $\mathcal {F}(P)\oplus \mathcal {F}(\mathcal {N})$, where P is a polytope in $\mathbb {R}^d$ and $\mathcal {N}$ a net in $\mathbb {H}^d$ coming from the tiling. This implies that the spaces $\mathcal {F}(\mathbb {H}^d)$ and $\mathcal {F}(\mathbb {R}^d)\oplus \mathcal {F}(\mathcal {M})$ are isomorphic for every net $\mathcal {M}$ in $\mathbb {H}^d$. In particular, we obtain that, for $d=2,3,4$, $\mathcal {F}(\mathbb {H}^d)$ has a Schauder basis. Moreover, using a similar method, we also give an explicit isomorphism between $\mathrm {Lip}(\mathbb {H}^d)$ and $\mathrm {Lip}(\mathbb {R}^d)$.
We exhibit a new approach to the proofs of the existence of a large family of almost isometric ideals in nonseparable Banach spaces and existence of a large family of almost isometric local retracts in metric spaces. Our approach also implies the existence of a large family of nontrivial projections on every dual of a nonseparable Banach space. We prove three possible formulations of our results are equivalent. Some applications are mentioned which witness the usefulness of our novel approach.
We prove that the set of elementary tensors is weakly closed in the projective tensor product of two Banach spaces. As a result, we answer a question of Rodríguez and Rueda Zoca [‘Weak precompactness in projective tensor products’, Indag. Math. (N.S.)35(1) (2024), 60–75], proving that if $(x_n) \subset X$ and $(y_n) \subset Y$ are two weakly null sequences such that $(x_n \otimes y_n)$ converges weakly in $X \widehat {\otimes }_\pi Y$, then $(x_n \otimes y_n)$ is also weakly null.
We prove that every smooth complex normed space X has the Wigner property. That is, for any complex normed space Y and every surjective mapping $f: X\rightarrow Y$ satisfying
where $\mathbb {T}$ is the unit circle of the complex plane, there exists a function $\sigma : X\rightarrow \mathbb {T}$ such that $\sigma \cdot f$ is a linear or anti-linear isometry. This is a variant of Wigner’s theorem for complex normed spaces.
We study symmetric and antisymmetric tensor products of Hilbert-space operators, focusing on norms and spectra for some well-known classes favored by function-theoretic operator theorists. We pose many open questions that should interest the field.
We study the complexities of isometry and isomorphism classes of separable Banach spaces in the Polish spaces of Banach spaces, recently introduced and investigated by the authors in [14]. We obtain sharp results concerning the most classical separable Banach spaces.
We prove that the infinite-dimensional separable Hilbert space is characterized as the unique separable infinite-dimensional Banach space whose isometry class is closed, and also as the unique separable infinite-dimensional Banach space whose isomorphism class is $F_\sigma $. For $p\in \left [1,2\right )\cup \left (2,\infty \right )$, we show that the isometry classes of $L_p[0,1]$ and $\ell _p$ are $G_\delta $-complete sets and $F_{\sigma \delta }$-complete sets, respectively. Then we show that the isometry class of $c_0$ is an $F_{\sigma \delta }$-complete set.
Additionally, we compute the complexities of many other natural classes of separable Banach spaces; for instance, the class of separable $\mathcal {L}_{p,\lambda +}$-spaces, for $p,\lambda \geq 1$, is shown to be a $G_\delta $-set, the class of superreflexive spaces is shown to be an $F_{\sigma \delta }$-set, and the class of spaces with local $\Pi $-basis structure is shown to be a $\boldsymbol {\Sigma }^0_6$-set. The paper is concluded with many open problems and suggestions for a future research.
Although Naimark dilation theorem was originally stated in 1940, it still finds many important applications in various areas. The objective of this paper is to introduce a method for explicitly constructing the vectors of complementary frames in the Naimark dilation theorem, specifically in cases where the initial Parseval frame contains a Riesz basis as a subset. These findings serve as a foundation for the construction of dual frames.
We study hermitian operators and isometries on spaces of vector-valued Lipschitz maps with the sum norm. There are two main theorems in this paper. Firstly, we prove that every hermitian operator on $\operatorname {Lip}(X,E)$, where E is a complex Banach space, is a generalized composition operator. Secondly, we give a complete description of unital surjective complex linear isometries on $\operatorname {Lip}(X,\mathcal {A})$, where $\mathcal {A}$ is a unital factor $C^{*}$-algebra. These results improve previous results stated by the author.
Let $H^{\infty}(\Omega,X)$ be the space of bounded analytic functions $f(z)=\sum_{n=0}^{\infty} x_{n}z^{n}$ from a proper simply connected domain Ω containing the unit disk $\mathbb{D}:=\{z\in \mathbb{C}:|z| \lt 1\}$ into a complex Banach space X with $\left\lVert f\right\rVert_{H^{\infty}(\Omega,X)} \leq 1$. Let $\phi=\{\phi_{n}(r)\}_{n=0}^{\infty}$ with $\phi_{0}(r)\leq 1$ such that $\sum_{n=0}^{\infty} \phi_{n}(r)$ converges locally uniformly with respect to $r \in [0,1)$. For $1\leq p,q \lt \infty$, we denote
In this article, we extensively study the Bohr radius $R_{p,q,\phi}(\Omega,X)$, when X is an arbitrary Banach space, and $X=\mathcal{B}(\mathcal{H})$ is the algebra of all bounded linear operators on a complex Hilbert space $\mathcal{H}$. Furthermore, we establish the Bohr inequality for the operator-valued Cesáro operator and Bernardi operator.