To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We exhibit a new approach to the proofs of the existence of a large family of almost isometric ideals in nonseparable Banach spaces and existence of a large family of almost isometric local retracts in metric spaces. Our approach also implies the existence of a large family of nontrivial projections on every dual of a nonseparable Banach space. We prove three possible formulations of our results are equivalent. Some applications are mentioned which witness the usefulness of our novel approach.
We prove that the set of elementary tensors is weakly closed in the projective tensor product of two Banach spaces. As a result, we answer a question of Rodríguez and Rueda Zoca [‘Weak precompactness in projective tensor products’, Indag. Math. (N.S.)35(1) (2024), 60–75], proving that if $(x_n) \subset X$ and $(y_n) \subset Y$ are two weakly null sequences such that $(x_n \otimes y_n)$ converges weakly in $X \widehat {\otimes }_\pi Y$, then $(x_n \otimes y_n)$ is also weakly null.
We prove that every smooth complex normed space X has the Wigner property. That is, for any complex normed space Y and every surjective mapping $f: X\rightarrow Y$ satisfying
where $\mathbb {T}$ is the unit circle of the complex plane, there exists a function $\sigma : X\rightarrow \mathbb {T}$ such that $\sigma \cdot f$ is a linear or anti-linear isometry. This is a variant of Wigner’s theorem for complex normed spaces.
We study symmetric and antisymmetric tensor products of Hilbert-space operators, focusing on norms and spectra for some well-known classes favored by function-theoretic operator theorists. We pose many open questions that should interest the field.
We study the complexities of isometry and isomorphism classes of separable Banach spaces in the Polish spaces of Banach spaces, recently introduced and investigated by the authors in [14]. We obtain sharp results concerning the most classical separable Banach spaces.
We prove that the infinite-dimensional separable Hilbert space is characterized as the unique separable infinite-dimensional Banach space whose isometry class is closed, and also as the unique separable infinite-dimensional Banach space whose isomorphism class is $F_\sigma $. For $p\in \left [1,2\right )\cup \left (2,\infty \right )$, we show that the isometry classes of $L_p[0,1]$ and $\ell _p$ are $G_\delta $-complete sets and $F_{\sigma \delta }$-complete sets, respectively. Then we show that the isometry class of $c_0$ is an $F_{\sigma \delta }$-complete set.
Additionally, we compute the complexities of many other natural classes of separable Banach spaces; for instance, the class of separable $\mathcal {L}_{p,\lambda +}$-spaces, for $p,\lambda \geq 1$, is shown to be a $G_\delta $-set, the class of superreflexive spaces is shown to be an $F_{\sigma \delta }$-set, and the class of spaces with local $\Pi $-basis structure is shown to be a $\boldsymbol {\Sigma }^0_6$-set. The paper is concluded with many open problems and suggestions for a future research.
Although Naimark dilation theorem was originally stated in 1940, it still finds many important applications in various areas. The objective of this paper is to introduce a method for explicitly constructing the vectors of complementary frames in the Naimark dilation theorem, specifically in cases where the initial Parseval frame contains a Riesz basis as a subset. These findings serve as a foundation for the construction of dual frames.
We study hermitian operators and isometries on spaces of vector-valued Lipschitz maps with the sum norm. There are two main theorems in this paper. Firstly, we prove that every hermitian operator on $\operatorname {Lip}(X,E)$, where E is a complex Banach space, is a generalized composition operator. Secondly, we give a complete description of unital surjective complex linear isometries on $\operatorname {Lip}(X,\mathcal {A})$, where $\mathcal {A}$ is a unital factor $C^{*}$-algebra. These results improve previous results stated by the author.
Let $H^{\infty}(\Omega,X)$ be the space of bounded analytic functions $f(z)=\sum_{n=0}^{\infty} x_{n}z^{n}$ from a proper simply connected domain Ω containing the unit disk $\mathbb{D}:=\{z\in \mathbb{C}:|z| \lt 1\}$ into a complex Banach space X with $\left\lVert f\right\rVert_{H^{\infty}(\Omega,X)} \leq 1$. Let $\phi=\{\phi_{n}(r)\}_{n=0}^{\infty}$ with $\phi_{0}(r)\leq 1$ such that $\sum_{n=0}^{\infty} \phi_{n}(r)$ converges locally uniformly with respect to $r \in [0,1)$. For $1\leq p,q \lt \infty$, we denote
In this article, we extensively study the Bohr radius $R_{p,q,\phi}(\Omega,X)$, when X is an arbitrary Banach space, and $X=\mathcal{B}(\mathcal{H})$ is the algebra of all bounded linear operators on a complex Hilbert space $\mathcal{H}$. Furthermore, we establish the Bohr inequality for the operator-valued Cesáro operator and Bernardi operator.
We study the relationship between weak* Dunford–Pettis and weakly (resp. M-weakly, order weakly, almost M-weakly, and almost L-weakly) operators on Banach lattices. The following is one of the major results dealing with this matter: If E and F are Banach lattices such that F is Dedekind $\sigma $-complete, then each positive weak* Dunford–Pettis operator $T:E\rightarrow F$ is weakly compact if and only if one of the following assertions is valid: (a) the norms of $E^{\prime }$ and F are order continuous; (b) E is reflexive; and (c) F is reflexive.
We consider two questions on the geometry of Lipschitz-free $p$-spaces $\mathcal {F}_p$, where $0< p\leq 1$, over subsets of finite-dimensional vector spaces. We solve an open problem and show that if $(\mathcal {M}, \rho )$ is an infinite doubling metric space (e.g. an infinite subset of an Euclidean space), then $\mathcal {F}_p (\mathcal {M}, \rho ^\alpha )\simeq \ell _p$ for every $\alpha \in (0,\,1)$ and $0< p\leq 1$. An upper bound on the Banach–Mazur distance between the spaces $\mathcal {F}_p ([0, 1]^d, |\cdot |^\alpha )$ and $\ell _p$ is given. Moreover, we tackle a question due to Albiac et al. [4] and expound the role of $p$, $d$ for the Lipschitz constant of a canonical, locally coordinatewise affine retraction from $(K, |\cdot |_1)$, where $K=\cup _{Q\in \mathcal {R}} Q$ is a union of a collection $\emptyset \neq \mathcal {R} \subseteq \{ Rw + R[0,\,1]^d: w\in \mathbb {Z}^d\}$ of cubes in $\mathbb {R}^d$ with side length $R>0$, into the Lipschitz-free $p$-space $\mathcal {F}_p (V, |\cdot |_1)$ over their vertices.
We prove some results on weakly almost square Banach spaces and their relatives. On the one hand, we discuss weak almost squareness in the setting of Banach function spaces. More precisely, let $(\Omega,\Sigma)$ be a measurable space, let E be a Banach lattice and let $\nu:\Sigma \to E^+$ be a non-atomic countably additive measure having relatively norm compact range. Then the space $L_1(\nu)$ is weakly almost square. This result applies to some abstract Cesàro function spaces. Similar arguments show that the Lebesgue–Bochner space $L_1(\mu,Y)$ is weakly almost square for any Banach space Y and for any non-atomic finite measure µ. On the other hand, we make some progress on the open question of whether there exists a locally almost square Banach space, which fails the diameter two property. In this line, we prove that if X is any Banach space containing a complemented isomorphic copy of c0, then for every $0 \lt \varepsilon \lt 1$, there exists an equivalent norm $|\cdot|$ on X satisfying the following: (i) every slice of the unit ball $B_{(X,|\cdot|)}$ has diameter 2; (ii) $B_{(X,|\cdot|)}$ contains non-empty relatively weakly open subsets of arbitrarily small diameter and (iii) $(X,|\cdot|)$ is (r, s)-SQ for all $0 \lt r,s \lt \frac{1-\varepsilon}{1+\varepsilon}$.
First we give a counterexample showing that recent results on separate order continuity of Arens extensions of multilinear operators cannot be improved to get separate order continuity on the product of the whole of the biduals. Then we establish conditions on the operators and/or on the underlying Riesz spaces/Banach lattices so that the extensions are order continuous on the product of the whole biduals. We also prove that all Arens extensions of any regular multilinear operator are order continuous in at least one variable and we study when Arens extensions of regular homogeneous polynomials on a Banach lattice $E$ are order continuous on $E^{**}$.
Let X be a compact metric space, C(X) be the space of continuous real-valued functions on X and $A_{1},A_{2}$ be two closed subalgebras of C(X) containing constant functions. We consider the problem of approximation of a function $f\in C(X)$ by elements from $A_{1}+A_{2}$. We prove a Chebyshev-type alternation theorem for a function $u_{0} \in A_{1}+A_{2}$ to be a best approximation to f.
Given a Borel probability measure µ on $\mathbb{R}^n$ and a real matrix $R\in M_n(\mathbb{R})$. We call R a spectral eigenmatrix of the measure µ if there exists a countable set $\Lambda\subset \mathbb{R}^n$ such that the sets $E_\Lambda=\big\{{\rm e}^{2\pi i \langle\lambda,x\rangle}:\lambda\in \Lambda\big\}$ and $E_{R\Lambda}=\big\{{\rm e}^{2\pi i \langle R\lambda,x\rangle}:\lambda\in \Lambda\big\}$ are both orthonormal bases for the Hilbert space $L^2(\mu)$. In this paper, we study the structure of spectral eigenmatrix of the planar self-affine measure $\mu_{M,D}$ generated by an expanding integer matrix $M\in M_2(2\mathbb{Z})$ and the four-elements digit set $D = \{(0,0)^t,(1,0)^t,(0,1)^t,(-1,-1)^t\}$. Some sufficient and/or necessary conditions for R to be a spectral eigenmatrix of $\mu_{M,D}$ are given.
We study the geometry of Hilbert spaces with complete Pick kernels and the geometry of sets in complex hyperbolic space, taking advantage of the correspondence between the two topics. We focus on questions of assembling Hilbert spaces into larger spaces and of assembling sets into larger sets. Model questions include describing the possible three-dimensional subspaces of four-dimensional Hilbert spaces with Pick kernels and describing the possible triangular faces of a tetrahedron in $\mathbb {CH}^{n}$. A novel technical tool is a complex analog of the cosine of a vertex angle.
We give an example of a pair of real Banach spaces such that they are neither linearly isomorphic nor isomorphic with respect to the structure of Birkhoff–James orthogonality, but have mutually homeomorphic geometric structure spaces.
The main purpose of this paper is to study weight-semi-greedy Markushevich bases, and in particular, find conditions under which such bases are weight-almost greedy. In this context, we prove that, for a large class of weights, the two notions are equivalent. We also show that all weight semi-greedy bases are truncation quasi-greedy and weight-superdemocratic. In all of the above cases, we also bring to the context of weights the weak greedy and Chebyshev greedy algorithms—which are frequently studied in the literature on greedy approximation. In the course of our work, a new property arises naturally and its relation with squeeze symmetric and bidemocratic bases is given. In addition, we study some parameters involving the weak thresholding and Chebyshevian greedy algorithms. Finally, we give examples of conditional bases with some of the weighted greedy-type conditions we study.
The existence of isometric embedding of $S_q^m$ into $S_p^n$, where $1\leq p\neq q\leq \infty$ and $m,n\geq 2$, has been recently studied in [6]. In this article, we extend the study of isometric embeddability beyond the above-mentioned range of $p$ and $q$. More precisely, we show that there is no isometric embedding of the commutative quasi-Banach space $\ell _q^m(\mathbb {R})$ into $\ell _p^n(\mathbb {R})$, where $(q,p)\in (0,\infty )\times (0,1)$ and $p\neq q$. As non-commutative quasi-Banach spaces, we show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in (0,2)\setminus \{1\}\times (0,1)$$\cup \, \{1\}\times (0,1)\setminus \left \{\!\frac {1}{n}:n\in \mathbb {N}\right \}$$\cup \, \{\infty \}\times (0,1)\setminus \left \{\!\frac {1}{n}:n\in \mathbb {N}\right \}$ and $p\neq q$. Moreover, in some restrictive cases, we also show that there is no isometric embedding of $S_q^m$ into $S_p^n$, where $(q,p)\in [2, \infty )\times (0,1)$. A new tool in our paper is the non-commutative Clarkson's inequality for Schatten class operators. Other tools involved are the Kato–Rellich theorem and multiple operator integrals in perturbation theory, followed by intricate computations involving power-series analysis.