To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
New inequalities relating the norm $n(X)$ and the numerical radius $w(X)$ of invertible bounded linear Hilbert space operators were announced by Hosseini and Omidvar [‘Some inequalities for the numerical radius for Hilbert space operators’, Bull. Aust. Math. Soc.94 (2016), 489–496]. For example, they asserted that $w(AB)\leq$$2w(A)w(B)$ for invertible bounded linear Hilbert space operators $A$ and $B$. We identify implicit hypotheses used in their discovery. The inequalities and their proofs can be made good by adding the extra hypotheses which take the form $n(X^{-1})=n(X)^{-1}$. We give counterexamples in the absence of such additional hypotheses. Finally, we show that these hypotheses yield even stronger conclusions, for example, $w(AB)=w(A)w(B)$.
The purpose of this article is to generalize some known characterizations of Banach space properties in terms of graph preclusion. In particular, it is shown that superreflexivity can be characterized by the non-equi-bi-Lipschitz embeddability of any family of bundle graphs generated by a non-trivial finitely branching bundle graph. It is likewise shown that asymptotic uniform convexifiability can be characterized within the class of reflexive Banach spaces with an unconditional asymptotic structure by the non-equi-bi-Lipschitz embeddability of any family of bundle graphs generated by a non-trivial $\aleph _{0}$-branching bundle graph. For the specific case of $L_{1}$, it is shown that every countably branching bundle graph bi-Lipschitzly embeds into $L_{1}$ with distortion no worse than $2$.
The aim of this note is to study octahedrality in vector-valued Lipschitz-free Banach spaces on a metric space, under topological hypotheses on it, by analysing the weak-star strong diameter 2 property in Lipschitz function spaces. Also, we show an example that proves that our results are optimal and that octahedrality in vector-valued Lipschitz-free Banach spaces actually relies on the underlying metric space as well as on the Banach one.
where $f:X\rightarrow Y$ is a map between two real ${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$-type spaces. We show that all such solutions are phase equivalent to real linear isometries. This can be considered as an extension of Wigner’s theorem on symmetry for real ${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$-type spaces.
Let A and B be arbitrary C*-algebras, we prove that the existence of a Hilbert A–B-bimodule of finite index ensures that the WEP, QWEP, and LLP along with other finite-dimensional approximation properties such as CBAP and (S)OAP are shared by A and B. For this, we first study the stability of the WEP, QWEP, and LLP under Morita equivalence of C*-algebras. We present examples of Hilbert A–B-bimodules, which are not of finite index, while such properties are shared between A and B. To this end, we study twisted crossed products by amenable discrete groups.
In this paper, we study the bounded approximation property for the weighted space $\mathcal{HV}$(U) of holomorphic mappings defined on a balanced open subset U of a Banach space E and its predual $\mathcal{GV}$(U), where $\mathcal{V}$ is a countable family of weights. After obtaining an $\mathcal{S}$-absolute decomposition for the space $\mathcal{GV}$(U), we show that E has the bounded approximation property if and only if $\mathcal{GV}$(U) has. In case $\mathcal{V}$ consists of a single weight v, an analogous characterization for the metric approximation property for a Banach space E has been obtained in terms of the metric approximation property for the space $\mathcal{G}_v$(U).
We study uniform and coarse embeddings between Banach spaces and topological groups. A particular focus is put on equivariant embeddings, that is, continuous cocycles associated to continuous affine isometric actions of topological groups on separable Banach spaces with varying geometry.
We extend the results of Schu [‘Iterative construction of fixed points of asymptotically nonexpansive mappings’, J. Math. Anal. Appl.158 (1991), 407–413] to monotone asymptotically nonexpansive mappings by means of the Fibonacci–Mann iteration process
where $T$ is a monotone asymptotically nonexpansive self-mapping defined on a closed bounded and nonempty convex subset of a uniformly convex Banach space and $\{f(n)\}$ is the Fibonacci integer sequence. We obtain a weak convergence result in $L_{p}([0,1])$, with $1<p<+\infty$, using a property similar to the weak Opial condition satisfied by monotone sequences.
For a normed infinite-dimensional space, we prove that the family of all locally convex topologies which are compatible with the original norm topology has cardinality greater or equal to $\mathfrak{c}$.
In this short note, we correct and reformulate Theorem 3.1 in the paper published in Proceedings of the Edinburgh Mathematical Society58(3) (2015), 617–629.
Answering a question of Füredi and Loeb [On the best constant for the Besicovitch covering theorem. Proc. Amer. Math. Soc.121(4) (1994), 1063–1073], we show that the maximum number of pairwise intersecting homothets of a $d$-dimensional centrally symmetric convex body $K$, none of which contains the center of another in its interior, is at most $O(3^{d}d\log d)$. If $K$ is not necessarily centrally symmetric and the role of its center is played by its centroid, then the above bound can be replaced by $O(3^{d}\binom{2d}{d}d\log d)$. We establish analogous results for the case where the center is defined as an arbitrary point in the interior of $K$. We also show that, in the latter case, one can always find families of at least $\unicode[STIX]{x1D6FA}((2/\sqrt{3})^{d})$ translates of $K$ with the above property.
Let $E$ be a finite-dimensional normed space and $\unicode[STIX]{x1D6FA}$ a non-empty convex open set in $E$. We show that the Lipschitz-free space of $\unicode[STIX]{x1D6FA}$ is canonically isometric to the quotient of $L^{1}(\unicode[STIX]{x1D6FA},E)$ by the subspace consisting of vector fields with zero divergence in the sense of distributions on $E$.
We provide new quantitative versions of Helly’s theorem. For example, we show that for every family $\{P_{i}:i\in I\}$ of closed half-spaces in $\mathbb{R}^{n}$ such that $P=\bigcap _{i\in I}P_{i}$ has positive volume, there exist $s\leqslant \unicode[STIX]{x1D6FC}n$ and $i_{1},\ldots ,i_{s}\in I$ such that
where $\unicode[STIX]{x1D6FC},C>0$ are absolute constants. These results complement and improve previous work of Bárány et al and Naszódi. Our method combines the work of Srivastava on approximate John’s decompositions with few vectors, a new estimate on the corresponding constant in the Brascamp–Lieb inequality and an appropriate variant of Ball’s proof of the reverse isoperimetric inequality.
The Birkhoff orthogonality has been recently intensively studied in connection with the geometry of Banach spaces and operator theory. The main aim of this paper is to characterize the Birkhoff orthogonality in ${\mathcal{L}}(X;Y)$ under the assumption that ${\mathcal{K}}(X;Y)$ is an $M$-ideal in ${\mathcal{L}}(X;Y)$. Moreover, we survey the known results, as well as giving some new and more general ones. Furthermore, we characterize an approximate Birkhoff orthogonality in ${\mathcal{K}}(X;Y)$.
We show that any mapping between two real $p$-normed spaces, which preserves the unit distance and the midpoint of segments with distance $2^{p}$, is an isometry. Making use of it, we provide an alternative proof of some known results on the Aleksandrov question in normed spaces and also generalise these known results to $p$-normed spaces.
Motivated by the local theory of Banach spaces, we introduce a notion of finite representability for metric spaces. This allows us to develop a new technique for comparing the generalised roundness of metric spaces. We illustrate this technique by applying it to Banach spaces and metric trees. In the realm of Banach spaces we obtain results such as the following: (1) if ${\mathcal{U}}$ is any ultrafilter and $X$ is any Banach space, then the second dual $X^{\ast \ast }$ and the ultrapower $(X)_{{\mathcal{U}}}$ have the same generalised roundness as $X$, and (2) no Banach space of positive generalised roundness is uniformly homeomorphic to $c_{0}$ or $\ell _{p}$, $2<p<\infty$. For metric trees, we give the first examples of metric trees of generalised roundness one that have finite diameter. In addition, we show that metric trees of generalised roundness one possess special Euclidean embedding properties that distinguish them from all other metric trees.
We say that a Banach space $X$ is ‘nice’ if every extreme operator from any Banach space into $X$ is a nice operator (that is, its adjoint preserves extreme points). We prove that if $X$ is a nice almost $CL$-space, then $X$ is isometrically isomorphic to $c_{0}(I)$ for some set $I$. We also show that if $X$ is a nice Banach space whose closed unit ball has the Krein–Milman property, then $X$ is $l_{\infty }^{n}$ for some $n\in \mathbb{N}$. The proof of our results relies on the structure topology.
In this paper we provide an elementary proof of James’ characterisation of weak compactness for Banach spaces whose dual ball is weak∗ sequentially compact.
We introduce some new refinements of numerical radius inequalities for Hilbert space invertible operators. More precisely, we prove that if $T\in {\mathcal{B}}({\mathcal{H}})$ is an invertible operator, then $\Vert T\Vert \leq \sqrt{2}\unicode[STIX]{x1D714}(T)$.
There are two main aims of the paper. The first is to extend the criterion for the precompactness of sets in Banach function spaces to the setting of quasi-Banach function spaces. The second is to extend the criterion for the precompactness of sets in the Lebesgue spaces Lp(ℝn), 1 ⩽ p < ∞, to the so-called power quasi-Banach function spaces. These criteria are applied to establish compact embeddings of abstract Besov spaces into quasi-Banach function spaces. The results are illustrated on embeddings of Besov spaces , into Lorentz-type spaces.