We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this short note, we correct and reformulate Theorem 3.1 in the paper published in Proceedings of the Edinburgh Mathematical Society58(3) (2015), 617–629.
Answering a question of Füredi and Loeb [On the best constant for the Besicovitch covering theorem. Proc. Amer. Math. Soc.121(4) (1994), 1063–1073], we show that the maximum number of pairwise intersecting homothets of a $d$-dimensional centrally symmetric convex body $K$, none of which contains the center of another in its interior, is at most $O(3^{d}d\log d)$. If $K$ is not necessarily centrally symmetric and the role of its center is played by its centroid, then the above bound can be replaced by $O(3^{d}\binom{2d}{d}d\log d)$. We establish analogous results for the case where the center is defined as an arbitrary point in the interior of $K$. We also show that, in the latter case, one can always find families of at least $\unicode[STIX]{x1D6FA}((2/\sqrt{3})^{d})$ translates of $K$ with the above property.
Let $E$ be a finite-dimensional normed space and $\unicode[STIX]{x1D6FA}$ a non-empty convex open set in $E$. We show that the Lipschitz-free space of $\unicode[STIX]{x1D6FA}$ is canonically isometric to the quotient of $L^{1}(\unicode[STIX]{x1D6FA},E)$ by the subspace consisting of vector fields with zero divergence in the sense of distributions on $E$.
We provide new quantitative versions of Helly’s theorem. For example, we show that for every family $\{P_{i}:i\in I\}$ of closed half-spaces in $\mathbb{R}^{n}$ such that $P=\bigcap _{i\in I}P_{i}$ has positive volume, there exist $s\leqslant \unicode[STIX]{x1D6FC}n$ and $i_{1},\ldots ,i_{s}\in I$ such that
where $\unicode[STIX]{x1D6FC},C>0$ are absolute constants. These results complement and improve previous work of Bárány et al and Naszódi. Our method combines the work of Srivastava on approximate John’s decompositions with few vectors, a new estimate on the corresponding constant in the Brascamp–Lieb inequality and an appropriate variant of Ball’s proof of the reverse isoperimetric inequality.
The Birkhoff orthogonality has been recently intensively studied in connection with the geometry of Banach spaces and operator theory. The main aim of this paper is to characterize the Birkhoff orthogonality in ${\mathcal{L}}(X;Y)$ under the assumption that ${\mathcal{K}}(X;Y)$ is an $M$-ideal in ${\mathcal{L}}(X;Y)$. Moreover, we survey the known results, as well as giving some new and more general ones. Furthermore, we characterize an approximate Birkhoff orthogonality in ${\mathcal{K}}(X;Y)$.
We show that any mapping between two real $p$-normed spaces, which preserves the unit distance and the midpoint of segments with distance $2^{p}$, is an isometry. Making use of it, we provide an alternative proof of some known results on the Aleksandrov question in normed spaces and also generalise these known results to $p$-normed spaces.
Motivated by the local theory of Banach spaces, we introduce a notion of finite representability for metric spaces. This allows us to develop a new technique for comparing the generalised roundness of metric spaces. We illustrate this technique by applying it to Banach spaces and metric trees. In the realm of Banach spaces we obtain results such as the following: (1) if ${\mathcal{U}}$ is any ultrafilter and $X$ is any Banach space, then the second dual $X^{\ast \ast }$ and the ultrapower $(X)_{{\mathcal{U}}}$ have the same generalised roundness as $X$, and (2) no Banach space of positive generalised roundness is uniformly homeomorphic to $c_{0}$ or $\ell _{p}$, $2<p<\infty$. For metric trees, we give the first examples of metric trees of generalised roundness one that have finite diameter. In addition, we show that metric trees of generalised roundness one possess special Euclidean embedding properties that distinguish them from all other metric trees.
We say that a Banach space $X$ is ‘nice’ if every extreme operator from any Banach space into $X$ is a nice operator (that is, its adjoint preserves extreme points). We prove that if $X$ is a nice almost $CL$-space, then $X$ is isometrically isomorphic to $c_{0}(I)$ for some set $I$. We also show that if $X$ is a nice Banach space whose closed unit ball has the Krein–Milman property, then $X$ is $l_{\infty }^{n}$ for some $n\in \mathbb{N}$. The proof of our results relies on the structure topology.
In this paper we provide an elementary proof of James’ characterisation of weak compactness for Banach spaces whose dual ball is weak∗ sequentially compact.
We introduce some new refinements of numerical radius inequalities for Hilbert space invertible operators. More precisely, we prove that if $T\in {\mathcal{B}}({\mathcal{H}})$ is an invertible operator, then $\Vert T\Vert \leq \sqrt{2}\unicode[STIX]{x1D714}(T)$.
There are two main aims of the paper. The first is to extend the criterion for the precompactness of sets in Banach function spaces to the setting of quasi-Banach function spaces. The second is to extend the criterion for the precompactness of sets in the Lebesgue spaces Lp(ℝn), 1 ⩽ p < ∞, to the so-called power quasi-Banach function spaces. These criteria are applied to establish compact embeddings of abstract Besov spaces into quasi-Banach function spaces. The results are illustrated on embeddings of Besov spaces , into Lorentz-type spaces.
We prove that an operator system is (min, ess)-nuclear if its $C^{\ast }$-envelope is nuclear. This allows us to deduce that an operator system associated to a generating set of a countable discrete group by Farenick et al. [‘Operator systems from discrete groups’, Comm. Math. Phys.329(1) (2014), 207–238] is (min, ess)-nuclear if and only if the group is amenable. We also make a detailed comparison between ess and other operator system tensor products and show that an operator system associated to a minimal generating set of a finitely generated discrete group (respectively, a finite graph) is (min, max)-nuclear if and only if the group is of order less than or equal to three (respectively, every component of the graph is complete).
We give an alternative proof of the theorem of Alikakos and Fusco concerning existence of heteroclinic solutions U : ℝ → ℝN to the system
Here a± are local minima of a potential W ∈ C2(ℝN) with W(a±) = 0. This system arises in the theory of phase transitions. Our method is variational but differs from the original artificial constraint method of Alikakos and Fusco and establishes existence by analysing the loss of compactness in minimizing sequences of the action in the appropriate functional space. Our assumptions are slightly different from those considered previously and also imply a priori estimates for the solution.
For every $p\in (0,\infty )$ we associate to every metric space $(X,d_{X})$ a numerical invariant $\mathfrak{X}_{p}(X)\in [0,\infty ]$ such that if $\mathfrak{X}_{p}(X)<\infty$ and a metric space $(Y,d_{Y})$ admits a bi-Lipschitz embedding into $X$ then also $\mathfrak{X}_{p}(Y)<\infty$. We prove that if $p,q\in (2,\infty )$ satisfy $q<p$ then $\mathfrak{X}_{p}(L_{p})<\infty$ yet $\mathfrak{X}_{p}(L_{q})=\infty$. Thus, our new bi-Lipschitz invariant certifies that $L_{q}$ does not admit a bi-Lipschitz embedding into $L_{p}$ when $2<q<p<\infty$. This completes the long-standing search for bi-Lipschitz invariants that serve as an obstruction to the embeddability of $L_{p}$ spaces into each other, the previously understood cases of which were metric notions of type and cotype, which however fail to certify the nonembeddability of $L_{q}$ into $L_{p}$ when $2<q<p<\infty$. Among the consequences of our results are new quantitative restrictions on the bi-Lipschitz embeddability into $L_{p}$ of snowflakes of $L_{q}$ and integer grids in $\ell _{q}^{n}$, for $2<q<p<\infty$. As a byproduct of our investigations, we also obtain results on the geometry of the Schatten $p$ trace class $S_{p}$ that are new even in the linear setting.
is true for any vectors $x,y$ and a projection $P:H\rightarrow H$. Applications to norm and numerical radius inequalities of two bounded operators are given.
We study ultrasymmetric spaces in the case in which the fundamental function belongs to a limiting class of quasiconcave functions. In the process, we study limiting cases of $J$ interpolation spaces and establish new $J$–$K$ identities as well as a reiteration theorem for these limiting interpolation methods.
Based on a construction method introduced by Bourgain and Delbaen, we give a general definition of a Bourgain–Delbaen space and prove that every infinite-dimensional separable ${\mathcal{L}}_{\infty }$-space is isomorphic to such a space. Furthermore, we provide an example of a ${\mathcal{L}}_{\infty }$ and asymptotic $c_{0}$ space not containing $c_{0}$.
Let $X,Y$ be two Banach spaces and $B_{X}$ the closed unit ball of $X$. We prove that if there is an isometry $f:B_{X}\rightarrow Y$ with $f(0)=0$, then there exists an isometry $F:X\rightarrow Y^{\ast \ast }$. If, in addition, $Y$ is weakly nearly strictly convex, then there is an isometry $F:X\rightarrow Y$. Making use of these results, we show that if $Y$ is weakly nearly strictly convex and there is an isometry $f:B_{X}\rightarrow Y$ with $f(0)=0$, then there exists a linear isometry $S:X\rightarrow Y$.
In this article, we study the Mazur–Ulam property of the sum of two strictly convex Banach spaces. We give an equivalent form of the isometric extension problem and two equivalent conditions to decide whether all strictly convex Banach spaces admit the Mazur–Ulam property. We also find necessary and sufficient conditions under which the $\ell ^{1}$-sum and the $\ell ^{\infty }$-sum of two strictly convex Banach spaces admit the Mazur–Ulam property.
Given a closed set $C$ in a Banach space $(X,\Vert \cdot \Vert )$, a point $x\in X$ is said to have a nearest point in $C$ if there exists $z\in C$ such that $d_{C}(x)=\Vert x-z\Vert$, where $d_{C}$ is the distance of $x$ from $C$. We survey the problem of studying the size of the set of points in $X$ which have nearest points in $C$. We then turn to the topic of delta convex functions and indicate how it is related to finding nearest points.