${\mathcal{K}}_{\mathit{up}}$ -APPROXIMATION PROPERTY AND ITS DUALITY
$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}^{*}$ DUNFORD–PETTIS OPERATORS ON BANACH LATTICES
${L}^{2} $
$R(a, X)$
${\ell }^{\infty } $-SUM OF STRICTLY CONVEX NORMED SPACES