To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Several rather general sufficient conditions for the extrapolation of the calculus of generalized Dirac operators from L2 to Lp are established. As consequences, we obtain some embedding theorems, quadratic estimates and Littlewood–Paley theorems in terms of this calculus in Lebesgue spaces. Some further generalizations, utilised in Part II devoted to applications, which include the Kato square root model, are discussed. We use resolvent approach and show the irrelevance of the semigroup one. Auxiliary results include a high order counterpart of the Hilbert identity, the derivation of new forms of ‘off-diagonal’ estimates, and the study of the structure of the model in Lebesgue spaces and its interpolation properties. In particular, some coercivity conditions for forms in Banach spaces are used as a substitution of the ellipticity ones. Attention is devoted to the relations between the properties of perturbed and unperturbed generalized Dirac operators. We do not use any stability results.
We give an example of a Banach space X such that K (X, X) is not an ideal in K (X, X**). We prove that if z* is a weak* denting point in the unit ball of Z* and if X is a closed subspace of a Banach space Y, then the set of norm-preserving extensions H B(x* ⊗ z*) ⊆ (Z*, Y)* of a functional x* ⊗ Z* ∈ (Z ⊗ X)* is equal to the set H B(x*) ⊗ {z*}. Using this result, we show that if X is an M-ideal in Y and Z is a reflexive Banach space, then K (Z, X) is an M-ideal in K(Z, Y) whenever K (Z, X) is an ideal in K (Z, Y). We also show that K (Z, X) is an ideal (respectively, an M-ideal) in K (Z, Y) for all Banach spaces Z whenever X is an ideal (respectively, an M-ideal) in Y and X * has the compact approximation property with conjugate operators.
We show that the operator-valued Marcinkiewicz and Mikhlin Fourier multiplier theorem are valid if and only if the underlying Banach space is isomorphic to a Hilbert space.
The integration of vector (and operator) valued functions with respect to vector (and operator) valued measures can be simplified by assuming that the measures involved take values in the positive elements of a Banach lattice.
We study classes of Banach spaces where every set-valued mapping from a complete metric space into subsets of the Banach space which satisfies certain minimal properties, is single-valued and norm upper semi-continuous at the points of a dense Gδ subset of its domain. Characterisations of these classes are developed and permanence properties are established. Sufficiency conditions for membership of these classes are defined in terms of fragmentability and σ-fragmentability of the weak topology. A characterisation of non membership is used to show that l∞ (N) is not a member of our classe of generic continuity spaces.
If the second dual of a Banach space E is smooth at each point of a certain norm dense subset, then its first dual admits a long sequence of norm one projections, and these projections have ranges which are suitable for a transfinite induction argument. This leads to the construction of an equivalent locally uniformly rotund norm and a Markuschevich basis for E*.
Theorems 1 and 2 are known results concerning Lp–Lq estimates for certain operators wherein the point (1/p, 1/q) lies on the line of duality 1/p + 1/q = 1. In Theorems 1′ and 2′ we show that with mild additional hypotheses it is possible to prove Lp-Lq estimates for indices (1/p, 1/q) off the line of duality. Applications to Bochner-Riesz means of negative order and uniform Sobolev inequalities are given.
If a Banach space E admits a Markuschevich basis, then E can be renormed to be locally uniformly rotund. When the coefficient space of the basis is 1-norming, and this norm is very smooth, E is weakly compactly generated.
Some simplifications of Schäffer's girth and perimeter of the unit spheres are introduced. Their general properties are discussed, and they are used to study the lp, Lp spaces, uniformly nonsquare spaces, and their isomorphic classes.
Let X be a (real or complex) rearrangement-invariant function space on Ω (where Ω = [0, 1] or Ω ⊆ N) whose norm is not proportional to the L2-norm. Let H be a separable Hilbert space. We characterize surjective isometries of X (H). We prove that if T is such an isometry then there exist Borel maps a: Ω → + K and σ: Ω → Ω and a strongly measurable operator map S of Ω into B (H) so that for almost all ω, S(ω) is a surjective isometry of H, and for any f ∈ X(H), T f(ω) = a(ω)S(ω)(f(σ(ω))) a.e. As a consequence we obtain a new proof of the characterization of surjective isometries in complex rearrangement-invariant function spaces.
Si E et F sont deux espaces vectoriels en dualité séparante, M+(E, F) désigne le cône des mesures coniques positives sur E mis en dualité avec F, c'est à dire le cônes des formes postives sur le treillis de fonctions sur E engendré par F. Ce sont des objets plus généraux que les mesures cylindriques admettant des moments finis d'ordre un.
On part d'abord d'une mesure conique représentée par une mesure de Radon sur le complété faible de E et on donne des critéres (par exemple R.N.P.) pour qu'elle le soit sur l'espace E lui-même.
On étudie ensuite les cônes faiblement complets saillants (classe L) contenus dans un espace de Banach ou dans le dual d'un espace de Fréchet F; on montre notamment qu' un cône faiblement fermé contenu dans F′ est dans Lsi son polaire dans F est positivement engendré.
Si B est un espace de Banach et 11 ⊄ B, on cherche à prologner une μ ∈ M+(B′, B) en un élement de M+ (B′, B″). On montre également que, si X est un convexe compact, toute fonction vérifiant le calcul barycentrique sur X est continue sur des ensembles fixes que l'on précise.
Enfin on donne des conditions (de type bornologique) sur un e.l.c.s E, permettant d'interpréter une μ ∈ M+ (E, E′) comme une mesure conique sur un espace normé.
In this paper we show that the Lorentz space Lw, 1(0, ∞) has the weak-star uniform Kadec-Klee property if and only if inft>0 (w(αt)/w(t)) > 1 and supt>0(φ(αt) / φ(t))< 1 for all α ∈ (0, 1), where φ(t) = ∫t0 w(s) ds.
Let E(0, ∞) be a separable symmetric function space, let M be a semifinite von Neumann algebra with normal faithful semifinite trace μ, and let E(M, μ) be the symmetric operator space associated with E(0, ∞). If E(0, ∞) has the uniform Kadec-Klee property with respect to convergence in measure then E(M, μ) also has this property. In particular, if LΦ(0, ∞) (ϕ(0, ∞)) is a separable Orlicz (Lorentz) space then LΦ(M, μ) (Λϕ (M, μ)) has the uniform Kadec-Klee property with respect to convergence in measure on sets of finite measure if and only if the norm of E(0, ∞) satisfies G. Birkhoff's condition of uniform monotonicity.
An operator is said to be nice if its conjugate maps extreme points of the dual unit ball to extreme points. The classical Banach-Stone Theorem says that an isometry from a space of continuous functions on a compact Hausdorff space onto another such space is a weighted composition operator. One common proof of this result uses the fact that an isometry is a nice operator. We use extreme point methods and the notion of centralizer to characterize nice operators as operator weighted compositions on subspaces of spaces of continuous functions with values in a Banach space. Previous characterizations of isometries from a subspace M of C0( Q, X) into C0(K, Y) require Y to be strictly convex, but we are able to obtain some results without that assumption. Important use is made of a vector-valued version of the Choquet Boundary. We also characterize nice operators from one function module to another.
Let K be a compact Hausdorff space and C(K) the Banach space of all real-valued continuous functions on K, with the sup norm. Types over C(K) (in the sense of Krivine and Maurey) are represented here by pairs (l, u) of bounded real-valued functions on K, where l is lower semicontinuous and u is upper semicontinuous, l ≤ u and l(x) = u(x) for every isolated point x of K. For each pair the corresponding type is defined by the equation τ(g) = max{║l + g║∞, ║u + g║∞} for all g ∈ C(K), where ║·║∞ is the sup norm on bounded functions. The correspondence between types and pairs (l, u) is bijective.
Let X1, X2, …, XN be Banach spaces and ψ a continuous convex function with some appropriate conditions on a certain convex set in RN−1. Let (X1⊕X2⊕…⊕XN)Ψ be the direct sum of X1, X2, …, XN equipped with the norm associated with Ψ. We characterize the strict, uniform, and locally uniform convexity of (X1 ⊕ X2 ⊕ … ⊕ XN)Ψ; by means of the convex function Ψ. As an application these convexities are characterized for the ℓp, q-sum (X1 ⊕ X2 ⊕ … ⊕ XN)p, q (1 < q ≤ p ≤ ∈, q < ∞), which includes the well-known facts for the ℓp-sum (X1 ⊕ X2 ⊕ … ⊕ XN)p in the case p = q.
Let Β1, Β2 be a pair of Banach spaces and T be a vector valued martingale transform (with respect to general filtration) which maps Β1-valued martingales into Β2-valued martingales. Then, the following statements are equivalent: T is bounded from into for some p (or equivalently for every p) in the range 1 < p < ∞; T is bounded from into BMOB2; T is bounded from BMOB1 into BMOB2; T is bounded from into . Applications to UMD and martingale cotype properties are given. We also prove that the Hardy space defined in the case of a general filtration has nice dense sets and nice atomic decompositions if and only if Β has the Radon-Nikodým property.
Let X be a complex Banach space, G a compact abelian group and Λ a subset of Ĝ, the dual group pf G. Then LΛ1(G, X) has the Radon-Nikodym property if and only if X has the Radon-Nikodym property and Λ is Riesz set. In particular, H1 (T, X) has the Radon-Nikodym property if and only if X has the Radon-Nikodym property. This solves a problem of Hensgen.
The stability properties of the family ℳ of all intersections of closed balls are investigated in spaces C(K), where K is an arbitrary Hausdorff compact space. We prove that ℳ is stable under Minkowski addition if and only if K is extremally disconnected. In contrast to this, we show that ℳ is always ball stable in these spaces. Finally, we present a Banach space (indeed a subspace of C[0, 1]) which fails to be ball stable, answering an open question. Our results rest on the study of semicontinuous functions in Hausdorff compact spaces.
We present an operator algebraic approach to Wigner's unitary-antiunitary theorem using some classical results from ring theory. To show how effective this approach is, we prove a generalization of this celebrated theorem for Hilbert modules over matrix algebras. We also present a Wigner-type result for maps on prime C*-algebras.