We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Some geometric properties of Lp spaces are studied which shed light on the prediction of infinite variance processes. In particular, a Pythagorean theorem for Lp is derived. Improved growth rates for the moving average parameters are obtained.
We study the Schur and (weak) Dunford-Pettis properties in Banach lattices. We show that l1, c0 and l∞ are the only Banach symmetric sequence spaces with the weak Dunford-Pettis property. We also characterize a large class of Banach lattices without the (weak) Dunford-Pettis property. In MusielakOrlicz sequence spaces we give some necessary and sufficient conditions for the Schur property, extending the Yamamuro result. We also present a number of results on the Schur property in weighted Orlicz sequence spaces, and, in particular, we find a complete characterization of this property for weights belonging to class ∧. We also present examples of weighted Orlicz spaces with the Schur property which are not L1-spaces. Finally, as an application of the results in sequence spaces, we provide a description of the weak Dunford-Pettis and the positive Schur properties in Orlicz spaces over an infinite non-atomic measure space.
It is shown that Lipschitz quotient mappings between finite dimensional spaces behave nicely (e.g., are bijective in the case of equal dimensions) if the Lipschitz and co-Lipschitz constants are close to each other. For Lipschitz quotient mappings of the plane, a bound for the cardinality of the pre-image of a point in terms of the ratio of the constants is obtained.
The main purpose of this work is to study and apply generalized contact distributions of (inhomogeneous) Boolean models Z with values in the extended convex ring. Given a convex body L ⊂ ℝd and a gauge body B ⊂ ℝd, such a generalized contact distribution is the conditional distribution of the random vector (dB(L,Z),uB(L,Z),pB(L,Z),lB(L,Z)) given that Z∩L = ∅, where Z is a Boolean model, dB(L,Z) is the distance of L from Z with respect to B, pB(L,Z) is the boundary point in L realizing this distance (if it exists uniquely), uB(L,Z) is the corresponding boundary point of B (if it exists uniquely) and lB(L,·) may be taken from a large class of locally defined functionals. In particular, we pursue the question of the extent to which the spatial density and the grain distribution underlying an inhomogeneous Boolean model Z are determined by the generalized contact distributions of Z.
It is shown that it is possible to extend α Hölder maps from subsets of Lp to Lq (1 < p, q ≤ 2) isometrically if and only if α≤p/q*, and isomorphically if and only if α≤p/2. It is also proved that the set of αs which allow an isomorphic extension for α Hölder maps from subsets of X to Y is monotone when Y is a dual Banach space. Finally, the isometric and isomorphic extension problems for Hölder functions between Lp and Lq is studied for general p, q ≥ 1, and a question posed by K. Ball is solved by showing that it is not true that all Lipschitz maps from subsets of Hilbert space into normed spaces extend to the whole of Hilbert space.
Let ℳ be the collection of all intersections of balls, considered as a subset of the hyperspace ℳ of all closed, convex and bounded sets of a Banach space, furnished with the Hausdorff metric. It is proved that ℳ is uniformly very porous if and only if the space fails the Mazur intersection property.
In this paper, it is proved that, for any m unit vectors. x1…, xm in any n-dimensional real Hilbert space, there exists a unit vector x0 such that
for any y∈Sn−1. The exact value of the above integral is calculated, and these results used to improve some lower bounds for multilinear forms on real Hilbert spaces. An integral expression is also given for the complex case.
In [4], we investigated the spaces of continuous functions on countable products of compact Hausdorff spaces. Our main object here is to extend the discussion to arbitrary products of compact Hausdorff spaces. We prove the following theorems in Section 3.
Given a Banach space X and a norming subspace Z⊂X*, a geometrical method is introduced to characterize the existence of an equivalent σ(X, Z)-lsc LUR norm on X. A new simple proof of the Theorem of Troyanski: every rotund space with a Kadec norm is LUR renormable, and a generalization of the Moltó, Orihuela and Troyanski characterization of the LUR renormability, are provided without probability arguments. Among other applications, it is shown that a dual Banach space with a w*-Kadec norm admits a dual LUR norm.
We present an operator algebraic approach to Wigner's unitary-antiunitary theorem using some classical results from ring theory. To show how effective this approach is, we prove a generalization of this celebrated theorem for Hilbert modules over matrix algebras. We also present a Wigner-type result for maps on prime C*-algebras.
Hilbert spaces of analytic functions generated by rotationally symmetric measures on disks and annuli are studied. A domination relation between function norm and weighted sums of integral means on circles is developed. The function norm and the weighted sum take the same value for a specified class of polynomials. This class can be varied according to two parameters. Parts of the construction carry over to other Banach spaces of analytic of harmonic functions. Counterexamples illuminating properties of the complex method of interpolation appear as a byproduct.
Let X be a Hausdorff topological space and let ρ be a metric on it, not necessarily related to the topology. The space X is said to be fragmented by the metric ρ if each nonempty set in X has nonempty relatively open subsets of arbitrary small ρ-diameter. This concept was introduced by Jayne and Rogers (see [2]) while they studied the existence of Borel selections for upper semicontinuous set-valued maps.
We study classes of Banach spaces where every set-valued mapping from a complete metric space into subsets of the Banach space which satisfies certain minimal properties, is single-valued and norm upper semi-continuous at the points of a dense Gδ subset of its domain. Characterisations of these classes are developed and permanence properties are established. Sufficiency conditions for membership of these classes are defined in terms of fragmentability and σ-fragmentability of the weak topology. A characterisation of non membership is used to show that l∞ (N) is not a member of our classe of generic continuity spaces.
Let X be a Banach space and Y its closed subspace having property U in X. We use a net (Aα) of continuous linear operators on X such that ‖ Aα ‖ ≤ 1, Aα (X) ⊂ Y for all α, and limαg(Aαy) = g(y), y ∈ Y, g∈Y* to obtain equivalent conditions for Y to be an HB-subspace, u-ideal or h-ideal of X. Some equivalent renormings of c0 and l2 are shown to provide examples of spaces X for which K(X) has property U in L(X) without being an HB-subspace. Considering a generalization of the Godun set [3], we establish some relations between Godun sets of Banach spaces and related operator spaces. This enables us to prove e.g., that if K(X) is an HB-subspace of L(X), then X is an HB-subspace of X**—the result conjectured to be true by Å. Lima [9].
This paper is a contribution to the general problem of differentiability of Lipschitz functions between Banach spaces. We establish here a result concerning the existence of derivatives which are in some sense between the notions of Gâteaux and Frechet differentiability.
We show that if the derivative of a convex function on c0 is locally uniformly continuous, then every point x ∈ c0, has a neighbourhood O such that f′(O) is relatively compact in ℓ1.
Let X be a (real or complex) rearrangement-invariant function space on Ω (where Ω = [0, 1] or Ω ⊆ N) whose norm is not proportional to the L2-norm. Let H be a separable Hilbert space. We characterize surjective isometries of X (H). We prove that if T is such an isometry then there exist Borel maps a: Ω → + K and σ: Ω → Ω and a strongly measurable operator map S of Ω into B (H) so that for almost all ω, S(ω) is a surjective isometry of H, and for any f ∈ X(H), T f(ω) = a(ω)S(ω)(f(σ(ω))) a.e. As a consequence we obtain a new proof of the characterization of surjective isometries in complex rearrangement-invariant function spaces.
We present a new characterization of σ-fragmentability and illustrate its usefulness by proving some results relating analyticity and crfragmentability. We show, for instance, that a Banach space with the weak topology is σ-fragmented if, and only if, it is almost Čech-analytic and that an almost Čech-analytic topological space is σ-fragmented by a lower-semicontinuous metric if, and only if, each compact subset of the space is fragmented by the metric.
In this paper we show that the Lorentz space Lw, 1(0, ∞) has the weak-star uniform Kadec-Klee property if and only if inft>0 (w(αt)/w(t)) > 1 and supt>0(φ(αt) / φ(t))< 1 for all α ∈ (0, 1), where φ(t) = ∫t0 w(s) ds.
Let E(0, ∞) be a separable symmetric function space, let M be a semifinite von Neumann algebra with normal faithful semifinite trace μ, and let E(M, μ) be the symmetric operator space associated with E(0, ∞). If E(0, ∞) has the uniform Kadec-Klee property with respect to convergence in measure then E(M, μ) also has this property. In particular, if LΦ(0, ∞) (ϕ(0, ∞)) is a separable Orlicz (Lorentz) space then LΦ(M, μ) (Λϕ (M, μ)) has the uniform Kadec-Klee property with respect to convergence in measure on sets of finite measure if and only if the norm of E(0, ∞) satisfies G. Birkhoff's condition of uniform monotonicity.