We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Some inequalities for superadditive functionals defined on convex cones in linear spaces are given, with applications for various mappings associated with the Jensen, Hölder, Minkowski and Schwarz inequalities.
This paper contains two results: (a) if is a Banach space and (L,τ) is a nonempty locally compact Hausdorff space without isolated points, then each linear operator T:C0(L,X)→C0(L,X) whose range does not contain an isomorphic copy of c00 satisfies the Daugavet equality ; (b) if Γ is a nonempty set and X and Y are Banach spaces such that X is reflexive and Y does not contain c0 isomorphically, then any continuous linear operator T:c0(Γ,X)→Y is weakly compact.
Several rather general sufficient conditions for the extrapolation of the calculus of generalized Dirac operators from L2 to Lp are established. As consequences, we obtain some embedding theorems, quadratic estimates and Littlewood–Paley theorems in terms of this calculus in Lebesgue spaces. Some further generalizations, utilised in Part II devoted to applications, which include the Kato square root model, are discussed. We use resolvent approach and show the irrelevance of the semigroup one. Auxiliary results include a high order counterpart of the Hilbert identity, the derivation of new forms of ‘off-diagonal’ estimates, and the study of the structure of the model in Lebesgue spaces and its interpolation properties. In particular, some coercivity conditions for forms in Banach spaces are used as a substitution of the ellipticity ones. Attention is devoted to the relations between the properties of perturbed and unperturbed generalized Dirac operators. We do not use any stability results.
This article concerns the uniform classification of infinite dimensional real topological vector spaces. We examine a recently isolated linearization procedure for uniform homeomorphisms of the form φ: X →Y, where X is a Banach space with non-trivial type and Y is any topological vector space. For such a uniform homeomorphism φ, we show that Y must be normable and have the same supremal type as X. That Y is normable generalizes theorems of Bessaga and Enflo. This aspect of the theory determines new examples of uniform non-equivalence. That supremal type is a uniform invariant for Banach spaces is essentially due to Ribe. Our linearization approach gives an interesting new proof of Ribe's result.
The stability properties of the family ℳ of all intersections of closed balls are investigated in spaces C(K), where K is an arbitrary Hausdorff compact space. We prove that ℳ is stable under Minkowski addition if and only if K is extremally disconnected. In contrast to this, we show that ℳ is always ball stable in these spaces. Finally, we present a Banach space (indeed a subspace of C[0, 1]) which fails to be ball stable, answering an open question. Our results rest on the study of semicontinuous functions in Hausdorff compact spaces.
One of the main open problems in the theory of Asplund spaces is whether every Asplund space admits a Fréchet differentiable bump function. This problem is also open for C(K) Asplund spaces, where it is unknown even for C∞-Fréchet smooth bump (a general Asplund space does not always admit C2-Fréchet smooth bump – it suffices to consider ℓ3/2[DGZ2]).
In this paper, we show some results involving classical geometric concepts. For example, we characterize rotundity and Efimov-Stechkin property by mean of faces of the unit ball. Also, we prove that every almost locally uniformly rotund Banach space is locally uniformly rotund if its norm is Fréchet differentiable. Finally, we also provide some theorems in which we characterize the (strongly) exposed points of the unit ball using renormings.
A Banach space (X, ∥ · ∥) is said to be a dual differentiation space if every continuous convex function defined on a non-empty open convex subset A of X* that possesses weak* continuous subgradients at the points of a residual subset of A is Fréchet differentiable on a dense subset of A. In this paper we show that if we assume the continuum hypothesis then there exists a dual differentiation space that does not admit an equivalent locally uniformly rotund norm.
This note improves two previous results of the second author. They turn out to be special cases of our main theorem which states: A Banach space X has the property that the strong closure of every abstractly σ-complete Boolean algebra of projections in X is Bade complete if and only if X does not contain a copy of the sequence space ℓ∞.
We show that the operator-valued Marcinkiewicz and Mikhlin Fourier multiplier theorem are valid if and only if the underlying Banach space is isomorphic to a Hilbert space.
We give an example of a Banach space X such that K (X, X) is not an ideal in K (X, X**). We prove that if z* is a weak* denting point in the unit ball of Z* and if X is a closed subspace of a Banach space Y, then the set of norm-preserving extensions H B(x* ⊗ z*) ⊆ (Z*, Y)* of a functional x* ⊗ Z* ∈ (Z ⊗ X)* is equal to the set H B(x*) ⊗ {z*}. Using this result, we show that if X is an M-ideal in Y and Z is a reflexive Banach space, then K (Z, X) is an M-ideal in K(Z, Y) whenever K (Z, X) is an ideal in K (Z, Y). We also show that K (Z, X) is an ideal (respectively, an M-ideal) in K (Z, Y) for all Banach spaces Z whenever X is an ideal (respectively, an M-ideal) in Y and X * has the compact approximation property with conjugate operators.
Let K be a compact Hausdorff space and C(K) the Banach space of all real-valued continuous functions on K, with the sup norm. Types over C(K) (in the sense of Krivine and Maurey) are represented here by pairs (l, u) of bounded real-valued functions on K, where l is lower semicontinuous and u is upper semicontinuous, l ≤ u and l(x) = u(x) for every isolated point x of K. For each pair the corresponding type is defined by the equation τ(g) = max{║l + g║∞, ║u + g║∞} for all g ∈ C(K), where ║·║∞ is the sup norm on bounded functions. The correspondence between types and pairs (l, u) is bijective.
Let E be a Banach space whose dual E* has the approximation property, and let m be an index. We show that E* has the Radon-Nikodým property if and only if every m-homogeneous integral polynomial from E into any Banach space is nuclear. We also obtain factorization and composition results for nuclear polynomials.
Let Β1, Β2 be a pair of Banach spaces and T be a vector valued martingale transform (with respect to general filtration) which maps Β1-valued martingales into Β2-valued martingales. Then, the following statements are equivalent: T is bounded from into for some p (or equivalently for every p) in the range 1 < p < ∞; T is bounded from into BMOB2; T is bounded from BMOB1 into BMOB2; T is bounded from into . Applications to UMD and martingale cotype properties are given. We also prove that the Hardy space defined in the case of a general filtration has nice dense sets and nice atomic decompositions if and only if Β has the Radon-Nikodým property.
Composition operators Cτ between Orlicz spaces Lϕ (Ω, Σ, μ) generated by measurable and nonsingular transformations τ from Ω into itself are considered. We characterize boundedness and compactness of the composition operator between Orlicz spaces in terms of properties of the mapping τ, the function ϕ and the measure space (Ω, Σ, μ). These results generalize earlier results known for Lp-spaces.
Let X1, X2, …, XN be Banach spaces and ψ a continuous convex function with some appropriate conditions on a certain convex set in RN−1. Let (X1⊕X2⊕…⊕XN)Ψ be the direct sum of X1, X2, …, XN equipped with the norm associated with Ψ. We characterize the strict, uniform, and locally uniform convexity of (X1 ⊕ X2 ⊕ … ⊕ XN)Ψ; by means of the convex function Ψ. As an application these convexities are characterized for the ℓp, q-sum (X1 ⊕ X2 ⊕ … ⊕ XN)p, q (1 < q ≤ p ≤ ∈, q < ∞), which includes the well-known facts for the ℓp-sum (X1 ⊕ X2 ⊕ … ⊕ XN)p in the case p = q.
In this paper, we present the computation of exact value of nonsquare constants for some types of Orlicz sequence and function spaces. Main results: Let φ(u) be an N-function, φ(t) be the right derivative of φ(u), then we have (i) if φ (t) is concave, then (ii) if φ (t)is convex, then
The integration of vector (and operator) valued functions with respect to vector (and operator) valued measures can be simplified by assuming that the measures involved take values in the positive elements of a Banach lattice.
An operator is said to be nice if its conjugate maps extreme points of the dual unit ball to extreme points. The classical Banach-Stone Theorem says that an isometry from a space of continuous functions on a compact Hausdorff space onto another such space is a weighted composition operator. One common proof of this result uses the fact that an isometry is a nice operator. We use extreme point methods and the notion of centralizer to characterize nice operators as operator weighted compositions on subspaces of spaces of continuous functions with values in a Banach space. Previous characterizations of isometries from a subspace M of C0( Q, X) into C0(K, Y) require Y to be strictly convex, but we are able to obtain some results without that assumption. Important use is made of a vector-valued version of the Choquet Boundary. We also characterize nice operators from one function module to another.