To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this note, we provide an example of a Banach space X for which that is not isomorphic to any Hilbert space, where denotes the infimum of all von Neumann–Jordan constants for equivalent norms of X.
We prove that Alexandrov spaces of non-negative curvature have Markov type 2 in the sense of Ball. As a corollary, any Lipschitz continuous map from a subset of an Alexandrov space of non-negative curvature into a 2-uniformly convex Banach space can be extended to a Lipschitz continuous map on the entire space.
We define asymptotically p-flat and innerly asymptotically p-flat sets in Banach spaces in terms of uniform weak* Kadec–Klee asymptotic smoothness, and use these concepts to characterize weakly compactly generated (Asplund) spaces that are c0(ω1)-generated or ℓp(ω1)-generated, where p∈(1,∞). In particular, we show that every subspace of c0(ω1) is c0(ω1)-generated and every subspace of ℓp(ω1) is ℓp(ω1)-generated for every p∈(1,∞). As a byproduct of the technology of projectional resolutions of the identity we get an alternative proof of Rosenthal’s theorem on fixing c0(ω1).
Determining meaningful lower bounds on the supremal strict p-negative type of classes of finite metric spaces is a difficult nonlinear problem. In this paper we use an elementary approach to obtain the following result: given a finite metric space (X,d) there is a constant ζ>0, dependent only on n=∣X∣ and the scaled diameter 𝔇=(diamX)/min{d(x,y)∣x⁄=y} of X (which we may assume is >1), such that (X,d) has p-negative type for all p∈[0,ζ] and strict p-negative type for all p∈[0,ζ). In fact, we obtain A consideration of basic examples shows that our value of ζ is optimal provided that 𝔇≤2. In other words, for each 𝔇∈(1,2] and natural number n≥3, there exists an n-point metric space of scaled diameter 𝔇 whose supremal strict p-negative type is exactly ζ. The results of this paper hold more generally for all finite semi-metric spaces since the triangle inequality is not used in any of the proofs. Moreover, ζ is always optimal in the case of finite semi-metric spaces.
We characterize surjective nonexpansive mappings between unit spheres of ℒ∞(Γ)-type spaces. We show that such mappings turn out to be isometries and can be extended to linear isometries on the whole space ℒ∞(Γ).
We investigate the connection between measures of noncompactness of a bounded subset of a given Banach space and the corresponding measures of noncompactness of an ultrapower of this subset. The Kuratowski, Hausdorff and separation measures of noncompactness are considered. We prove that in the first two cases the measures of a subset are equal to the respective measures of ultrapowers of this subset. In the case of separation measure of noncompactness, the equality is not necessarily fulfilled.
We investigate the influence of interface conditions at a singularity of an indefinite canonical system on its Weyl coefficient. An explicit formula which parametrizes all possible Weyl coefficients of indefinite canonical systems with fixed Hamiltonian function is derived. This result is illustrated with two examples: the Bessel equation, which has a singular end point, and a Sturm–Liouville equation whose potential has an inner singularity, which arises from a continuation problem for a positive definite function.
We study when certain properties of Banach algebras are stable under ultrapower constructions. In particular, we consider when every ultrapower of is Arens regular, and give some evidence that this is so if and only if is isomorphic to a closed subalgebra of operators on a super-reflexive Banach space. We show that such ideas are closely related to whether one can sensibly define an ultrapower of a dual Banach algebraffi We study how tensor products of ultrapowers behave, and apply this to study the question of when every ultrapower of is amenable. We provide an abstract characterization in terms of something like an approximate diagonal, and consider when every ultrapower of a C*-algebra, or a group L1-convolution algebra, is amenable.
Hilbert spaces of analytic functions generated by rotationally symmetric measures on disks and annuli are studied. A domination relation between function norm and weighted sums of integral means on circles is developed. The function norm and the weighted sum take the same value for a specified class of polynomials. This class can be varied according to two parameters. Parts of the construction carry over to other Banach spaces of analytic of harmonic functions. Counterexamples illuminating properties of the complex method of interpolation appear as a byproduct.
Let E be a Banach space whose dual E* has the approximation property, and let m be an index. We show that E* has the Radon-Nikodým property if and only if every m-homogeneous integral polynomial from E into any Banach space is nuclear. We also obtain factorization and composition results for nuclear polynomials.
In this paper, we present the computation of exact value of nonsquare constants for some types of Orlicz sequence and function spaces. Main results: Let φ(u) be an N-function, φ(t) be the right derivative of φ(u), then we have (i) if φ (t) is concave, then (ii) if φ (t)is convex, then
This article concerns the uniform classification of infinite dimensional real topological vector spaces. We examine a recently isolated linearization procedure for uniform homeomorphisms of the form φ: X →Y, where X is a Banach space with non-trivial type and Y is any topological vector space. For such a uniform homeomorphism φ, we show that Y must be normable and have the same supremal type as X. That Y is normable generalizes theorems of Bessaga and Enflo. This aspect of the theory determines new examples of uniform non-equivalence. That supremal type is a uniform invariant for Banach spaces is essentially due to Ribe. Our linearization approach gives an interesting new proof of Ribe's result.
A subspace of a Banach space is called an operator range if it is the continuous linear image of a Banach space. Operator ranges and operator ideals with fixed range space are investigated. Properties of strictly singular, strictly cosingular, weakly sequentially precompact, and other classes of operators are derived. Perturbation theory and closed semi-Fredholm operators are discussed in the final section.
The structure and geometry of Banach spaces with the property that E(4) = Ê** + E⊥ ⊥ are investigated: such spaces are called quotient reflexive spaces here. For these spaces, if E is very smooth, Ê is also very smooth, and if E* is weakly locally uniformly rotund (WLUR), E(4) is smooth on a certain (relatively) norm dense subset of Ê**. Consequently, for quotient reflexive spaces, WLUR and very-WLUR are equivalent in E*.
For a positive continuous weight function ν on an open subset G of CN, let Hv(G) and Hv0(G) denote the Banach spaces (under the weighted supremum norm) of all holomorphic functions f on G such that ν f is bounded and ν f vanishes at infinity, respectively. We address the biduality problem as to when Hν(G) is naturally isometrically isomorphic to Hν0(G)**, and show in particular that this is the case whenever the closed unit ball in Hν0(G) in compact-open dense in the closed unit ball of Hν(G).
In this paper, we show some results involving classical geometric concepts. For example, we characterize rotundity and Efimov-Stechkin property by mean of faces of the unit ball. Also, we prove that every almost locally uniformly rotund Banach space is locally uniformly rotund if its norm is Fréchet differentiable. Finally, we also provide some theorems in which we characterize the (strongly) exposed points of the unit ball using renormings.
A Banach space is an Asplund space if every continuous convex function on an open convex subset is Fréchet differentiable on a dense G8 subset of its domain. The recent research on the Radon-Nikodým property in Banach spaces has revealed that a Banach space is an Asplund space if and only if every separable subspace has separable dual. It would appear that there is a case for providing a more direct proof of this characterisation.
We first define an inscribed center of a bounded convex body in a normed linear space as the center of a largest open ball contained in it (when such a ball exists). We then show that completeness is a necessary condition for a normed linear space to admit inscribed centers. We show that every weakly compact convex body in a Banach space has at least one inscribed center, and that admitting inscribed centers is a necessary and sufficient condition for reflexivity. We finally apply the concept of inscribed center to prove a type of fixed point theorem and also deduce a proposition concerning so-called Klee caverns in Hilbert spaces.
In this paper we present a minimax theorem of infinite dimension. The result contains several earlier duality results for various trigonometrical extremal problems including a problem of Fejér. Also the present duality theorem plays a crucial role in the determination of the exact number of zeros of certain Beurling zeta functions, and hence leads to a considerable generalization of the classical Beurling's Prime Number Theorem. The proof used functional analysis.
Let A be a commutative Banach algebra with identity of norm 1, X a Banach A-module and G a locally compact abeian group with Haar measure. Then the multipliers from an A -valued function algebra into an X-valued function space is studied. We characterize the multiplier spaces as the following isometrically isomorphic relations under some appropriate conditions: