To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $T = (T_1, \ldots , T_n)$ be a commuting tuple of bounded linear operators on a Hilbert space $\mathcal{H}$. The multiplicity of $T$ is the cardinality of a minimal generating set with respect to $T$. In this paper, we establish an additive formula for multiplicities of a class of commuting tuples of operators. A special case of the main result states the following: Let $n \geq 2$, and let $\mathcal{Q}_i$, $i = 1, \ldots , n$, be a proper closed shift co-invariant subspaces of the Dirichlet space or the Hardy space over the unit disc in $\mathbb {C}$. If $\mathcal{Q}_i^{\bot }$, $i = 1, \ldots , n$, is a zero-based shift invariant subspace, then the multiplicity of the joint $M_{\textbf {z}} = (M_{z_1}, \ldots , M_{z_n})$-invariant subspace $(\mathcal{Q}_1 \otimes \cdots \otimes \mathcal{Q}_n)^{\perp }$ of the Dirichlet space or the Hardy space over the unit polydisc in $\mathbb {C}^{n}$ is given by
holds for all $x,\,y\in X$. A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$, there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.
Let X be a real Banach space. The rectangular constant $\mu (X)$ and some generalisations of it, $\mu _p(X)$ for $p \geq 1$, were introduced by Gastinel and Joly around half a century ago. In this paper we make precise some characterisations of inner product spaces by using $\mu _p(X)$, correcting some statements appearing in the literature, and extend to $\mu _p(X)$ some characterisations of uniformly nonsquare spaces, known only for $\mu (X)$. We also give a characterisation of two-dimensional spaces with hexagonal norms. Finally, we indicate some new upper estimates concerning $\mu (l_p)$ and $\mu _p(l_p)$.
Let $\mathrm {Lip}_0(M)$ be the space of Lipschitz functions on a complete metric space M that vanish at a base point. We prove that every normal functional in ${\mathrm {Lip}_0(M)}^*$ is weak* continuous; that is, in order to verify weak* continuity it suffices to do so for bounded monotone nets of Lipschitz functions. This solves a problem posed by N. Weaver. As an auxiliary result, we show that the series decomposition developed by N. J. Kalton for functionals in the predual of $\mathrm {Lip}_0(M)$ can be partially extended to ${\mathrm {Lip}_0(M)}^*$.
Galego and Samuel showed that if K, L are metrizable, compact, Hausdorff spaces, then $C(K)\widehat{\otimes}_\pi C(L)$ is c0-saturated if and only if it is subprojective if and only if K and L are both scattered. We remove the hypothesis of metrizability from their result and extend it from the case of the twofold projective tensor product to the general n-fold projective tensor product to show that for any $n\in\mathbb{N}$ and compact, Hausdorff spaces K1, …, Kn, $\widehat{\otimes}_{\pi, i=1}^n C(K_i)$ is c0-saturated if and only if it is subprojective if and only if each Ki is scattered.
This paper presents an approach, based on interpolation theory of operators, to the study of interpolating sequences for interpolation Banach spaces between Hardy spaces. It is shown that the famous Carleson result for H∞ can be lifted to a large class of abstract Hardy spaces. A description is provided of the range of the Carleson operator defined on interpolation spaces between the classical Hardy spaces in terms of uniformly separated sequences. A key role in this description is played by some general interpolation results proved in the paper. As by-products, novel results are obtained which extend the Shapiro–Shields result on the characterisation of interpolation sequences for the classical Hardy spaces Hp. Applications to Hardy–Lorentz, Hardy–Marcinkiewicz and Hardy–Orlicz spaces are presented.
For 0 ≤ ξ ≤ ω1, we define the notion of ξ-weakly precompact and ξ-weakly compact sets in Banach spaces and prove that a set is ξ-weakly precompact if and only if its weak closure is ξ-weakly compact. We prove a quantified version of Grothendieck’s compactness principle and the characterisation of Schur spaces obtained in [7] and [9]. For 0 ≤ ξ ≤ ω1, we prove that a Banach space X has the ξ-Schur property if and only if every ξ-weakly compact set is contained in the closed, convex hull of a weakly null (equivalently, norm null) sequence. The ξ = 0 and ξ= ω1 cases of this theorem are the theorems of Grothendieck and [7], [9], respectively.
This article deals with the problem of when, given a collection $\mathcal {C}$ of weakly compact operators between separable Banach spaces, there exists a separable reflexive Banach space Z with a Schauder basis so that every element in $\mathcal {C}$ factors through Z (or through a subspace of Z). In particular, we show that there exists a reflexive space Z with a Schauder basis so that for each separable Banach space X, each weakly compact operator from X to $L_1[0,1]$ factors through Z.
We also prove the following descriptive set theoretical result: Let $\mathcal {L}$ be the standard Borel space of bounded operators between separable Banach spaces. We show that if $\mathcal {B}$ is a Borel subset of weakly compact operators between Banach spaces with separable duals, then for $A \in \mathcal {B}$, the assignment $A \to A^*$ can be realised by a Borel map $\mathcal {B}\to \mathcal {L}$.
We study the metric projection onto the closed convex cone in a real Hilbert space $\mathscr {H}$ generated by a sequence $\mathcal {V} = \{v_n\}_{n=0}^\infty $. The first main result of this article provides a sufficient condition under which the closed convex cone generated by $\mathcal {V}$ coincides with the following set:
$$ \begin{align*} \mathcal{C}[[\mathcal{V}]]: = \bigg\{\sum_{n=0}^\infty a_n v_n\Big|a_n\geq 0,\text{ the series }\sum_{n=0}^\infty a_n v_n\text{ converges in } \mathscr{H}\bigg\}. \end{align*} $$
Then, by adapting classical results on general convex cones, we give a useful description of the metric projection onto $\mathcal {C}[[\mathcal {V}]]$. As an application, we obtain the best approximations of many concrete functions in $L^2([-1,1])$ by polynomials with nonnegative coefficients.
In this paper we consider the following problem: let Xk, be a Banach space with a normalised basis (e(k, j))j, whose biorthogonals are denoted by ${(e_{(k,j)}^*)_j}$, for $k\in\N$, let $Z=\ell^\infty(X_k:k\kin\N)$ be their l∞-sum, and let $T:Z\to Z$ be a bounded linear operator with a large diagonal, i.e.,
Under which condition does the identity on Z factor through T? The purpose of this paper is to formulate general conditions for which the answer is positive.
Li et al. [‘Weak 2-local isometries on uniform algebras and Lipschitz algebras’, Publ. Mat.63 (2019), 241–264] generalized the Kowalski–Słodkowski theorem by establishing the following spherical variant: let A be a unital complex Banach algebra and let $\Delta : A \to \mathbb {C}$ be a mapping satisfying the following properties:
(a)$\Delta $ is 1-homogeneous (that is, $\Delta (\lambda x)=\lambda \Delta (x)$ for all $x \in A$, $\lambda \in \mathbb C$);
Then $\Delta $ is linear and there exists $\lambda _{0} \in \mathbb {T}$ such that $\lambda _{0}\Delta $ is multiplicative. In this note we prove that if (a) is relaxed to $\Delta (0)=0$, then $\Delta $ is complex-linear or conjugate-linear and $\overline {\Delta (\mathbf {1})}\Delta $ is multiplicative. We extend the Kowalski–Słodkowski theorem as a conclusion. As a corollary, we prove that every 2-local map in the set of all surjective isometries (without assuming linearity) on a certain function space is in fact a surjective isometry. This gives an affirmative answer to a problem on 2-local isometries posed by Molnár [‘On 2-local *-automorphisms and 2-local isometries of B(H)', J. Math. Anal. Appl.479(1) (2019), 569–580] and also in a private communication between Molnár and O. Hatori, 2018.
Non-amenability of ${\mathcal {B}}(E)$ has been surprisingly difficult to prove for the classical Banach spaces, but is now known for E = ℓp and E = Lp for all 1 ⩽ p < ∞. However, the arguments are rather indirect: the proof for L1 goes via non-amenability of $\ell ^\infty ({\mathcal {K}}(\ell _1))$ and a transference principle developed by Daws and Runde (Studia Math., 2010).
In this note, we provide a short proof that ${\mathcal {B}}(L_1)$ and some of its subalgebras are non-amenable, which completely bypasses all of this machinery. Our approach is based on classical properties of the ideal of representable operators on L1, and shows that ${\mathcal {B}}(L_1)$ is not even approximately amenable.
Bożejko and Speicher associated a finite von Neumann algebra MT to a self-adjoint operator T on a complex Hilbert space of the form $\mathcal {H}\otimes \mathcal {H}$ which satisfies the Yang–Baxter relation and $ \left\| T \right\| < 1$. We show that if dim$(\mathcal {H})$ ⩾ 2, then MT is a factor when T admits an eigenvector of some special form.
We study the stability of the differential process of Rochberg and Weiss associated with an analytic family of Banach spaces obtained using the complex interpolation method for families. In the context of Köthe function spaces, we complete earlier results of Kalton (who showed that there is global bounded stability for pairs of Köthe spaces) by showing that there is global (bounded) stability for families of up to three Köthe spaces distributed in arcs on the unit circle while there is no (bounded) stability for families of four or more Köthe spaces. In the context of arbitrary pairs of Banach spaces, we present some local stability results and some global isometric stability results.
We consider the Cauchy problem for a general class of parabolic partial differential equations in the Euclidean space ℝN. We show that given a weighted Lp-space $L_w^p({\mathbb {R}}^N)$ with 1 ⩽ p < ∞ and a fast growing weight w, there is a Schauder basis $(e_n)_{n=1}^\infty$ in $L_w^p({\mathbb {R}}^N)$ with the following property: given an arbitrary positive integer m there exists nm > 0 such that, if the initial data f belongs to the closed linear span of en with n ⩾ nm, then the decay rate of the solution of the problem is at least t−m for large times t.
The result generalizes the recent study of the authors concerning the classical linear heat equation. We present variants of the result having different methods of proofs and also consider finite polynomial decay rates instead of unlimited m.
We prove an extension of Pisier’s inequality (1986) with a dimension-independent constant for vector-valued functions whose target spaces satisfy a relaxation of the UMD property.
For integers $p,b\geq 2$, let $D=\{0,1,\ldots ,b-1\}$ be a set of consecutive digits. It is known that the Cantor measure $\unicode[STIX]{x1D707}_{pb,D}$ generated by the iterated function system $\{(pb)^{-1}(x+d)\}_{x\in \mathbb{R},d\in D}$ is a spectral measure with spectrum
where $S=pD$. We give conditions on $\unicode[STIX]{x1D70F}\in \mathbb{Z}$ under which the scaling set $\unicode[STIX]{x1D70F}\unicode[STIX]{x1D6EC}(pb,S)$ is also a spectrum of $\unicode[STIX]{x1D707}_{pb,D}$. These investigations link number theory and spectral measures.
A Δ-point x of a Banach space is a norm-one element that is arbitrarily close to convex combinations of elements in the unit ball that are almost at distance 2 from x. If, in addition, every point in the unit ball is arbitrarily close to such convex combinations, x is a Daugavet point. A Banach space X has the Daugavet property if and only if every norm-one element is a Daugavet point. We show that Δ- and Daugavet points are the same in L1-spaces, in L1-preduals, as well as in a big class of Müntz spaces. We also provide an example of a Banach space where all points on the unit sphere are Δ-points, but none of them are Daugavet points. We also study the property that the unit ball is the closed convex hull of its Δ-points. This gives rise to a new diameter-two property that we call the convex diametral diameter-two property. We show that all C(K) spaces, K infinite compact Hausdorff, as well as all Müntz spaces have this property. Moreover, we show that this property is stable under absolute sums.
Let $\{M_{n}\}_{n=1}^{\infty }$ be a sequence of expanding matrices with $M_{n}=\operatorname{diag}(p_{n},q_{n})$, and let $\{{\mathcal{D}}_{n}\}_{n=1}^{\infty }$ be a sequence of digit sets with ${\mathcal{D}}_{n}=\{(0,0)^{t},(a_{n},0)^{t},(0,b_{n})^{t},\pm (a_{n},b_{n})^{t}\}$, where $p_{n}$, $q_{n}$, $a_{n}$ and $b_{n}$ are positive integers for all $n\geqslant 1$. If $\sup _{n\geqslant 1}\{\frac{a_{n}}{p_{n}},\frac{b_{n}}{q_{n}}\}<\infty$, then the infinite convolution $\unicode[STIX]{x1D707}_{\{M_{n}\},\{{\mathcal{D}}_{n}\}}=\unicode[STIX]{x1D6FF}_{M_{1}^{-1}{\mathcal{D}}_{1}}\ast \unicode[STIX]{x1D6FF}_{(M_{1}M_{2})^{-1}{\mathcal{D}}_{2}}\ast \cdots \,$ is a Borel probability measure (Cantor–Dust–Moran measure). In this paper, we investigate whenever there exists a discrete set $\unicode[STIX]{x1D6EC}$ such that $\{e^{2\unicode[STIX]{x1D70B}i\langle \unicode[STIX]{x1D706},x\rangle }:\unicode[STIX]{x1D706}\in \unicode[STIX]{x1D6EC}\}$ is an orthonormal basis for $L^{2}(\unicode[STIX]{x1D707}_{\{M_{n}\},\{{\mathcal{D}}_{n}\}})$.