To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A presentation is given for the cohomology ring of a finitely presented combinatorially aspherical group with trivial coefficients in an integral domain. Cohomological periodicity is characterized in terms of the cup product.
A construction for Fitting formations given by the author and C. L. Kanes is generalised. The original examples were based on the use of Fitting families of modules over algebraically closed fields. An example of Haberl and Heineken in 1984 suggested that the methods should work with modules over arbitrary fields. We show that this is indeed the case, provided we restrictthe class of groups considered.
In order to classify solvable groups Philip Hall introduced in 1939 the concept of isoclinism. Subsequently he defined a more general notion called isologism. This is so to speak isoclinism with respect to a certain variety of groups. The equivalence relation isologism partitions the class of all groups into families. The present paper is concerned with the internal structure of these families.
Certain central products of the binary polyhedral groups with finite cyclic groups are here shown to have presentations with two generators and two defining relations; this disproves a conjecture of the second author, stated in J. Austral. Math. Soc. Ser. A 38 (1985), 230–240.
This is a study of formal power series under the binary operation of formal composition from a group-theoretical point of view. Various “large” properties are derived.
We give new presentations of the five Mathieu groups, the simple groups J1, J2, HS, McL, Co3, and some other simple and related groups. All generators in these presentations are involutions. Our presentations are simpler than the known presentations of this type for the groups mentioned above.
Let G be a group factorized by finitely many pairwise permutable nilpotent subgroups. The aim of this paper is to find conditions under which at least one of the factors is contained in a proper normal subgroup of G.
A method for constructing Fitting-Schunck classes is given: the method is an adaptation of one given by C. L. Kanes for constructing Fitting formations, and generalizes the Fitting-Schunck class construction given by Cossey in 1981. A criterion for deciding which of the Fitting-Schunck classes so constructed are formations is given.
Recall that a Poincaré Duality group G is said to be smoothly realisable when there exists a smooth closed manifold XG of homotopy type K(G, 1). In this note we prove
Theorem 1. Let
be an exact sequence of groups in which each Si is a Surface group, withfor i ≠ j, Ф is finite and G is torsion free. Then the Poincaré Duality group G is smoothly realisable.
In this paper the question is considered of when the wreath product of a nilpotent group with a CLT group G is a CLT group. It is shown that if the field with Pr elements is a splitting field of a Hall P1–subgroup of G, then P wr G is a CLT group for all p–groups P with |P/P1|≥ pr. Moreover, the class of all groups G having the property that N wr G is a CLT group for every nilpotent group N is shown to be quite large. For exmple, every group of odd order can be embedded as a subgroup of a group belonging to this class.
Miller's group of order 64 is a smallest example of a nonabelian group with an abelian automorphism group, and is the first in an infinite family of such groups formed by taking the semidirect product of a cyclic group of order 2m (m ≥ 3) with a dihedral group of order 8. This paper gives a method for constructing further examples of non abelian 2-groups which have abelian automorphism groups. Such a 2-group is the semidirect product of a cyclic group and a special 2-group (satisfying certain conditions). The automorphism group of this semidirect product is shown to be isomorphic to the central automorphism group of the corresponding direct product. The conditions satisfied by the special 2-group are determined by establishing when this direct product has an abelian central automorphism group.
The purpose of this paper is to construct a class of groups which properly contains the class of N-constrained groups, and which is such that all groups in this class have N-injectors.
The paper is devoted to showing that if the factorized group G = AB is almost solvable, if A and B are π-subgroups with min-p for some prime p in π and also if the hypercenter factor group A/H(A) or B/H(B) has min p for the prime p. then G is a π-group with min-p for the prime p.
An infinite family of 2-groups is produced. These groups have no direct factors and have a non-abelian automorphism group in which all automorphisms are central.
Let G be a finite group and let Aut(G) be its automorphism group. Then G is called a k-orbit group if G has k orbits (equivalence classes) under the action of Aut(G). (For g, hG, we have g ~ h if ga = h for some Aut(G).) It is shown that if G is a k-orbit group, then kGp + 1, where p is the least prime dividing the order of G. The 3-orbit groups which are not of prime-power order are classified. It is shown that A5 is the only insoluble 4-orbit group, and a structure theorem is proved about soluble 4-orbit groups.
Rational abelian groups, that is, torsion-free abelian groups of rank one, are characterized by their types. This paper characterizes rational nilpotent groups of class two, that is, nilpotent groups of class two in which the center and central factor group are direct sums of rational abelian groups. This characterization is done according to the types of the summands of the center and the central factor group. Using these types and some cohomological techniques it is possible to determine the automorphism group of the nilpotent group in question by performing essentially matrix computations.
In particular, the automorphism groups of rational nilpotent groups of class two and rank three are completely described. Specific examples are given of semicomplete and pseudocomplete nilpotent groups.
Some new classes of finite groups with zero deficiency presentations, that is to say presentations with as few defining relations as generators, are exhibited. The presentations require 3 generators and 3 defining relations; the groups so presented can also be generated by 2 of their elements, but it is not known whether they can be defined by 2 relations in these generators, and it is conjectured that in general they can not. The groups themselves are direct products or central products of binary polyhedral groups with cyclic groups, the order of the cyclic factor being arbitrary.
A Fitting class of finite soluble groups is one closed under the formation of normal subgroups and products of normal subgroups. It is shown that the Fitting classes of metanilpotent groups which are quotient group closed as well are primitive saturated formuations.
Centre-by-metabelian groups with the maximal condition for normal subgroups are exhibited which (a) are residually finite but have quotient groups which are not residually finite; and (b) have all quotients residually finite but are not abelian-by-polycyclic.