We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A conjecture of Gromov states that a one-ended word-hyperbolic group must contain a subgroup that is isomorphic to the fundamental group of a closed hyperbolic surface. Recent papers by Gordon and Wilton and by Kim and Wilton give sufficient conditions for hyperbolic surface groups to be embedded in a hyperbolic Baumslag double G. Using Nielsen cancellation methods based on techniques from previous work by the second author, we prove that a hyperbolic orientable surface group of genus 2 is embedded in a hyperbolic Baumslag double if and only if the amalgamated word W is a commutator: that is, W = [U, V] for some elements U, V ∈ F. Furthermore, a hyperbolic Baumslag double G contains a non-orientable surface group of genus 4 if and only if W = X2Y2 for some X, Y ∈ F. G can contain no non-orientable surface group of smaller genus.
The topological complexity is a numerical homotopy invariant of a topological space X which is motivated by robotics and is similar in spirit to the classical Lusternik–Schnirelmann category of X. Given a mechanical system with configuration space X, the invariant measures the complexity of motion planning algorithms which can be designed for the system. In this paper, we compute the topological complexity of the configuration space of n distinct ordered points on an orientable surface, for both closed and punctured surfaces. Our main tool is a theorem of B. Totaro describing the cohomology of configuration spaces of algebraic varieties. For configuration spaces of punctured surfaces, this is used in conjunction with techniques from the theory of mixed Hodge structures.
We extend some results known for FC-groups to the class FC* of generalized FC-groups introduced in de Giovanni et al. [‘Groups with restricted conjugacy classes’, Serdica Math. J.28(3) (2002), 241–254]. The main theorems pertain to the join of pronormal subgroups. The relevant role that the Wielandt subgroup plays in an FC*-group is pointed out.
We describe an algorithm for computing successive quotients of the Schur multiplier M(G) of a group G given by an invariant finite L-presentation. As applications, we investigate the Schur multipliers of various self-similar groups, including the Grigorchuk super-group, the generalized Fabrykowski–Gupta groups, the Basilica group and the Brunner–Sidki–Vieira group.
For an algebraic structure A denote by d(A) the smallest size of a generating set for A, and let d(A)=(d(A),d(A2),d(A3),…), where An denotes a direct power of A. In this paper we investigate the asymptotic behaviour of the sequence d(A) when A is one of the classical structures—a group, ring, module, algebra or Lie algebra. We show that if A is finite then d(A) grows either linearly or logarithmically. In the infinite case constant growth becomes another possibility; in particular, if A is an infinite simple structure belonging to one of the above classes then d(A) is eventually constant. Where appropriate we frame our exposition within the general theory of congruence permutable varieties.
We show that if G is a group and A⊂G is a finite set with ∣A2∣≤K∣A∣, then there is a symmetric neighbourhood of the identity S such that Sk⊂A2A−2 and ∣S∣≥exp (−KO(k))∣A∣.
For each finite real reflection group W, we identify a copy of the type-W simplicial generalized associahedron inside the corresponding simplicial permutahedron. This defines a bijection between the facets of the generalized associahedron and the elements of the type-W non-crossing partition lattice that is more tractable than previous such bijections. We show that the simplicial fan determined by this associahedron coincides with the Cambrian fan for W.
In this paper, four new discreteness criteria for isometric groups on complex hyperbolic spaces are proved, one of which shows that the Condition C hypothesis in Cao [‘Discrete and dense subgroups acting on complex hyperbolic space’, Bull. Aust. Math. Soc.78 (2008), 211–224, Theorem 1.4] is removable; another shows that the parabolic condition hypothesis in Li and Wang [‘Discreteness criteria for Möbius groups acting on II’, Bull. Aust. Math. Soc.80 (2009), 275–290, Theorem 3.1] is not necessary.
An almost-direct product of free groups is an iterated semidirect product of finitely generated free groups in which the action of the constituent free groups on the homology of one another is trivial. We determine the structure of the cohomology ring of such a group. This is used to analyze the topological complexity of the associated Eilenberg–MacLane space.
A group G is called morphic if every endomorphism α:G→G for which Gα◃G satisfies G/Gα≅ker (α). Call an endomorphism α∈end(G) regular if αβα=α for some β∈end(G), and call α unit regular if β can be chosen to be an automorphism of G. The main purpose of this paper is to prove the following group-theoretic analogue of a theorem of Ehrlich: if G is a morphic group, an endomorphism α:G→G for which Gα◃G is unit regular if and only if it is regular. As an application, a cancellation theorem is proved that characterizes the morphic groups among those with regular endomorphism monoids.
A group G satisfies the second Engel condition [X,Y,Y ]=1 if and only if x commutes with xy, for all x,y∈G. This paper considers the generalization of this condition to groups G such that, for fixed positive integers r and s, xr commutes with (xs)y for all x,y∈G. Various general bounds are proved for the structure of groups in the corresponding variety, defined by the law [Xr,(Xs)Y]=1.
We study commutation properties of subsets of right-angled Artin groups and trace monoids. We show that if Γ is any graph not containing a four-cycle without chords, then the group G(Γ) does not contain four elements whose commutation graph is a four-cycle; a consequence is that G(Γ) does not have a subgroup isomorphic to a direct product of non-abelian groups. We also obtain corresponding and more general results in the monoid case.
We describe the group of all reflection-preserving automorphisms of an imprimitive complex reflection group. We also study some properties of this automorphism group.
The arithmetic is interpreted in all the groups of Richard Thompson and Graham Higman, as well as in other groups of piecewise affine permutations of an interval which generalize the groups of Thompson and Higman. In particular, the elementary theories of all these groups are undecidable. Moreover, Thompson's group F and some of its generalizations interpret the arithmetic without parameters.
In 2006 we completed the proof of a five-part conjecture that was made in 1977 about a family of groups related to trivalent graphs. This family covers all 2-generator, 2-relator groups where one relator specifies that a generator is an involution and the other relator has three syllables. Our proof relies upon detailed but general computations in the groups under question. The proof is theoretical, but based upon explicit proofs produced by machine for individual cases. Here we explain how we derived the general proofs from specific cases. The conjecture essentially addressed only the finite groups in the family. Here we extend the results to infinite groups, effectively determining when members of this family of finitely presented groups are simply isomorphic to a specific quotient.
This note contains some remarks on generating pairs for automorphism groups of free groups. There has been significant use of electronic assistance. Little of this is used to verify the results.
An enumeration result for orientably regular hypermaps of a given type with automorphism groups isomorphic to PSL(2,q) or PGL(2,q) can be extracted from a 1969 paper by Sah. We extend the investigation to orientable reflexible hypermaps and to nonorientable regular hypermaps, providing many more details about the associated computations and explicit generating sets for the associated groups.
We prove that a finitely generated semigroup whose word problem is a one-counter language has a linear growth function. This provides us with a very strong restriction on the structure of such a semigroup, which, in particular, yields an elementary proof of a result of Herbst, that a group with a one-counter word problem is virtually cyclic. We prove also that the word problem of a group is an intersection of finitely many one-counter languages if and only if the group is virtually abelian.