To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We describe various classes of infinitely presented groups that are condensation points in the space of marked groups. A well-known class of such groups consists of finitely generated groups admitting an infinite minimal presentation. We introduce here a larger class of condensation groups, called infinitely independently presentable groups, and establish criteria which allow one to infer that a group is infinitely independently presentable. In addition, we construct examples of finitely generated groups with no minimal presentation, among them infinitely presented groups with Cantor–Bendixson rank 1, and we prove that every infinitely presented metabelian group is a condensation group.
If $X$ is a subgroup of a group $G$, the cardinal number $\min \{ \vert X: X_{G}\vert , \vert {X}^{G} : X\vert \} $ is called the normal oscillation of $X$ in $G$. It is proved that if all subgroups of a locally finite group $G$ have finite normal oscillation, then $G$ contains a nilpotent subgroup of finite index.
We construct categorical braid group actions from 2-representations of a Heisenberg algebra. These actions are induced by certain complexes which generalize spherical (Seidel–Thomas) twists and are reminiscent of the Rickard complexes defined by Chuang–Rouquier. Conjecturally, one can relate our complexes to Rickard complexes using categorical vertex operators.
Let $G$ be a finite group. We show that the order of the subgroup generated by coprime ${\gamma }_{k} $-commutators (respectively, ${\delta }_{k} $-commutators) is bounded in terms of the size of the set of coprime ${\gamma }_{k} $-commutators (respectively, ${\delta }_{k} $-commutators). This is in parallel with the classical theorem due to Turner-Smith that the words ${\gamma }_{k} $ and ${\delta }_{k} $ are concise.
We show that complete uniform visibility manifolds of finite volume with sectional curvature $- 1\leq K\leq 0$ have positive simplicial volume. This implies that their minimal volume is nonzero.
We show that every non-elementary hyperbolic group $\G $ admits a proper affine isometric action on $L^p(\bd \G \times \bd \G )$, where $\bd \G $ denotes the boundary of $\G $ and $p$ is large enough. Our construction involves a $\G $-invariant measure on $\bd \G \times \bd \G $ analogous to the Bowen–Margulis measure from the ${\rm CAT}(-1)$ setting, as well as a geometric, Busemann-type cocycle. We also deduce that $\G $ admits a proper affine isometric action on the first $\ell ^p$-cohomology group $H^1_{(p)}(\G )$ for large enough $p$.
After summarizing from previous papers the definitions of the concepts associated with nets, i.e. triples of 6-transpositions in the Monster up to braiding, we give some results.
We introduce the computer algebra package PyCox, written entirely in the Python language. It implements a set of algorithms, in a spirit similar to the older CHEVIE system, for working with Coxeter groups and Hecke algebras. This includes a new variation of the traditional algorithm for computing Kazhdan–Lusztig cells and W-graphs, which works efficiently for all finite groups of rank ≤8 (except E8). We also discuss the computation of Lusztig’s leading coefficients of character values and distinguished involutions (which works for E8 as well). Our experiments suggest a re-definition of Lusztig’s ‘special’ representations which, conjecturally, should also apply to the unequal parameter case. Supplementary materials are available with this article.
Let G be a group. We say that G∈𝒯(∞) provided that every infinite set of elements of G contains three distinct elements x,y,z such that x≠y,[x,y,z]=1=[y,z,x]=[z,x,y]. We use this to show that for a finitely generated soluble group G, G/Z2(G) is finite if and only if G∈𝒯(∞).
We construct and classify all groups given by triangular presentations associated to the smallest thick generalized quadrangle that act simply transitively on the vertices of hyperbolic triangular buildings of the smallest non-trivial thickness. Our classification yields 23 non-isomorphic torsion-free groups (which were obtained in an earlier work) and 168 non-isomorphic torsion groups acting on one of two possible buildings with the smallest thick generalized quadrangle as the link of each vertex. In analogy with the case, we find both torsion and torsion-free groups acting on the same building.
Let G be a group generated by k elements, G=〈g1,…,gk〉, with group operations (multiplication, inversion and comparison with identity) performed by a black box. We prove that one can test whether the group G is abelian at a cost of O(k) group operations. On the other hand, we show that a deterministic approach requires Ω(k2) group operations.
Suppose that W is a finite, unitary, reflection group acting on the complex vector space V and X is a subspace of V. Define N to be the setwise stabilizer of X in W, Z to be the pointwise stabilizer, and C=N/Z. Then restriction defines a homomorphism from the algebra of W-invariant polynomial functions on V to the algebra of C-invariant functions on X. In this note we consider the special case when W is a Coxeter group, V is the complexified reflection representation of W, and X is in the lattice of the arrangement of W, and give a simple, combinatorial characterization of when the restriction mapping is surjective in terms of the exponents of W and C. As an application of our result, in the case when W is the Weyl group of a semisimple, complex Lie algebra, we complete a calculation begun by Richardson in 1987 and obtain a simple combinatorial characterization of regular decomposition classes whose closure is a normal variety.
Assume that G is a solvable group whose elementary abelian sections are all finite. Suppose, further, that p is a prime such that G fails to contain any subgroups isomorphic to Cp∞. We show that if G is nilpotent, then the pro-p completion map induces an isomorphism for any discrete -module M of finite p-power order. For the general case, we prove that G contains a normal subgroup N of finite index such that the map is an isomorphism for any discrete -module M of finite p-power order. Moreover, if G lacks any Cp∞-sections, the subgroup N enjoys some additional special properties with respect to its pro-p topology.
This note proves Cellini’s conjecture that, in a Coxeter system (W,S) with reflections T, the T-increasing paths in W are self-avoiding. Here, a T-increasing path is a sequence v,t1v,…,tn⋯t1v in W with ti∈T and t1≺⋯≺tn in a reflection order ⪯ of T.
We present geometric conditions on a metric space (Y,dY) ensuring that, almost surely, any isometric action on Y by Gromov’s expander-based random group has a common fixed point. These geometric conditions involve uniform convexity and the validity of nonlinear Poincaré inequalities, and they are stable under natural operations such as scaling, Gromov–Hausdorff limits, and Cartesian products. We use methods from metric embedding theory to establish the validity of these conditions for a variety of classes of metric spaces, thus establishing new fixed point results for actions of Gromov’s ‘wild groups’.
If G is a semisimple Lie group of real rank at least two and Γ is an irreducible lattice in G, then every homomorphism from Γ to the outer automorphism group of a finitely generated free group has finite image.
We apply the techniques of symmetric generation to establish the standard presentations of the finite simply laced irreducible finite Coxeter groups, that is, the Coxeter groups of types An, Dn and En, and show that these are naturally arrived at purely through consideration of certain natural actions of symmetric groups. We go on to use these techniques to provide explicit representations of these groups.
Nielsen transformations determine the automorphisms of a free group of rank n, and also of a free abelian group of rank n, and furthermore the generating n-tuples of such groups form a single Nielsen equivalence class. For an arbitrary rank n group, the generating n-tuples may fall into several Nielsen classes. Diaconis and Graham [‘The graph of generating sets of an abelian group’, Colloq. Math.80 (1999), 31–38] determined the Nielsen classes for finite abelian groups. We extend their result to the case of infinite abelian groups.
The following theorem is proved. Let m, k and n be positive integers. There exists a number η=η(m,k,n) depending only on m, k and n such that if G is any residually finite group satisfying the condition that the product of any η commutators of the form [xm,y1,…,yk ]is of order dividing n, then the verbal subgroup of G corresponding to the word w=[xm,y1,…,yk ]is locally finite.