We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
CoxIter is a computer program designed to compute invariants of hyperbolic Coxeter groups. Given such a group, the program determines whether it is cocompact or of finite covolume, whether it is arithmetic in the non-cocompact case, and whether it provides the Euler characteristic and the combinatorial structure of the associated fundamental polyhedron. The aim of this paper is to present the theoretical background for the program. The source code is available online as supplementary material with the published article and on the author’s website (http://coxiter.rgug.ch).
We present a careful approximation of the quasi-geodesics of trees of hyperbolic and relatively hyperbolic spaces. As an application we prove a dynamical and geometric combination theorem for trees of relatively hyperbolic spaces, with both Farb's and Gromov's definitions.
We extend to soluble $\text{FC}^{\ast }$-groups, the class of generalised FC-groups introduced in de Giovanni et al. [‘Groups with restricted conjugacy classes’, Serdica Math. J.28(3) (2002), 241–254], the characterisation of finite soluble T-groups obtained recently in Kaplan [‘On T-groups, supersolvable groups, and maximal subgroups’, Arch. Math. (Basel)96(1) (2011), 19–25].
This note completes the proof of the structure theorem for pp-matroid groups which was stated in our earlier paper J. Krempa and A. Stocka [‘On sets of pp-generators of finite groups’, Bull. Aust. Math. Soc.91 (2015), 241–249].
We explore transversals of finite index subgroups of finitely generated groups. We show that when $H$ is a subgroup of a rank-$n$ group $G$ and $H$ has index at least $n$ in $G$, we can construct a left transversal for $H$ which contains a generating set of size $n$ for $G$; this construction is algorithmic when $G$ is finitely presented. We also show that, in the case where $G$ has rank $n\leq 3$, there is a simultaneous left–right transversal for $H$ which contains a generating set of size $n$ for $G$. We finish by showing that if $H$ is a subgroup of a rank-$n$ group $G$ with index less than $3\cdot 2^{n-1}$, and $H$ contains no primitive elements of $G$, then $H$ is normal in $G$ and $G/H\cong C_{2}^{n}$.
In this paper, we prove that the finite simple groups $\text{PSp}_{6}(q)$, ${\rm\Omega}_{7}(q)$ and $\text{PSU}_{7}(q^{2})$ are $(2,3)$-generated for all $q$. In particular, this result completes the classification of the $(2,3)$-generated finite classical simple groups up to dimension 7.
We study bi-invariant word metrics on groups. We provide an efficient algorithm for computing the bi-invariant word norm on a finitely generated free group and we construct an isometric embedding of a locally compact tree into the bi-invariant Cayley graph of a nonabelian free group. We investigate the geometry of cyclic subgroups. We observe that in many classes of groups, cyclic subgroups are either bounded or detected by homogeneous quasimorphisms. We call this property the bq-dichotomy and we prove it for many classes of groups of geometric origin.
A subset $X$ of a group $G$ is a set of pairwise noncommuting elements if $ab\neq ba$ for any two distinct elements $a$ and $b$ in $X$. If $|X|\geq |Y|$ for any other set of pairwise noncommuting elements $Y$ in $G$, then $X$ is called a maximal subset of pairwise noncommuting elements and the cardinality of such a subset (if it exists) is denoted by ${\it\omega}(G)$. In this paper, among other things, we prove that, for each positive integer $n$, there are only finitely many groups $G$, up to isoclinism, with ${\it\omega}(G)=n$, and we obtain similar results for groups with exactly $n$ centralisers.
The subgroup commutativity degree of a group $G$ is the probability that two subgroups of $G$ commute, or equivalently that the product of two subgroups is again a subgroup. For the dihedral, quasi-dihedral and generalised quaternion groups (all of 2-power cardinality), the subgroup commutativity degree tends to 0 as the size of the group tends to infinity. This also holds for the family of projective special linear groups over fields of even characteristic and for the family of the simple Suzuki groups. In this short note, we show that the family of finite $P$-groups also has this property.
If the centre of a group $G$ is trivial, then so is the centre of its automorphism group. We study the structure of the centre of the automorphism group of a group $G$ when the centre of $G$ is a cyclic group. In particular, it is shown that the exponent of $Z(\text{Aut}(G))$ is less than or equal to the exponent of $Z(G)$ in this case.
Let $G$ be a finitely generated group acting on a compact Hausdorff space ${\mathcal{X}}$. We give a fixed point characterisation for the action being amenable. As a corollary, we obtain a fixed point characterisation for the exactness of $G$.
There exist infinite finitely presented torsion-free groups G such that Aut(G) and Out(G) are torsion free but G has an automorphism sending some non-trivial element to its inverse.
Hughes has defined a class of groups that we call finite similarity structure (FSS) groups. Each FSS group acts on a compact ultrametric space by local similarities. The best-known example is Thompson’s group V. Guided by previous work on Thompson’s group, we show that many FSS groups are of type F∞. This generalizes work of Ken Brown from the 1980s.
We present a computer algebra package based on Magma for performing computations in rational Cherednik algebras with arbitrary parameters and in Verma modules for restricted rational Cherednik algebras. Part of this package is a new general Las Vegas algorithm for computing the head and the constituents of a module with simple head in characteristic zero, which we develop here theoretically. This algorithm is very successful when applied to Verma modules for restricted rational Cherednik algebras and it allows us to answer several questions posed by Gordon in some specific cases. We can determine the decomposition matrices of the Verma modules, the graded $G$-module structure of the simple modules, and the Calogero–Moser families of the generic restricted rational Cherednik algebra for around half of the exceptional complex reflection groups. In this way we can also confirm Martino’s conjecture for several exceptional complex reflection groups.
We prove that the groups presented by finite convergent monadic rewriting systems with generators of finite order are exactly the free products of finitely many finite groups, thereby confirming Gilman’s conjecture in a special case. We also prove that the finite cyclic groups of order at least three are the only finite groups admitting a presentation by more than one finite convergent monadic rewriting system (up to relabelling), and these admit presentation by exactly two such rewriting systems.
Estimating numerically the spectral radius of a random walk on a non-amenable graph is complicated, since the cardinality of balls grows exponentially fast with the radius. We propose an algorithm to get a bound from below for this spectral radius in Cayley graphs with finitely many cone types (including for instance hyperbolic groups). In the genus 2 surface group, it improves by an order of magnitude the previous best bound, due to Bartholdi.
We remedy an omission in the proof of Proposition 2.7 of the paper ‘Cohomology and profinite topologies for solvable groups of finite rank’, Bull. Aust. Math. Soc.86 (2012), 254–265. This proposition states that a solvable group with finite abelian section rank has merely finitely many subgroups of any given index.
We compute coherent presentations of Artin monoids, that is, presentations by generators, relations, and relations between the relations. For that, we use methods of higher-dimensional rewriting that extend Squier’s and Knuth–Bendix’s completions into a homotopical completion–reduction, applied to Artin’s and Garside’s presentations. The main result of the paper states that the so-called Tits–Zamolodchikov 3-cells extend Artin’s presentation into a coherent presentation. As a byproduct, we give a new constructive proof of a theorem of Deligne on the actions of an Artin monoid on a category.
This paper is devoted to determine the connectedness of the branch loci of the moduli space of non-orientable unbordered Klein surfaces. We obtain a result similar to Nielsen's in order to determine topological conjugacy of automorphisms of prime order on such surfaces. Using this result we prove that the branch locus is connected for surfaces of topological genus 4 and 5.