We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we complete the ADE-like classification of simple transitive 2-representations of Soergel bimodules in finite dihedral type, under the assumption of gradeability. In particular, we use bipartite graphs and zigzag algebras of ADE type to give an explicit construction of a graded (non-strict) version of all these 2-representations.
Moreover, we give simple combinatorial criteria for when two such 2-representations are equivalent and for when their Grothendieck groups give rise to isomorphic representations.
Finally, our construction also gives a large class of simple transitive 2-representations in infinite dihedral type for general bipartite graphs.
In this paper we construct an abelian category of mixed perverse sheaves attached to any realization of a Coxeter group, in terms of the associated Elias–Williamson diagrammatic category. This construction extends previous work of the first two authors, where we worked with parity complexes instead of diagrams, and we extend most of the properties known in this case to the general setting. As an application we prove that the split Grothendieck group of the Elias–Williamson diagrammatic category is isomorphic to the corresponding Hecke algebra, for any choice of realization.
A problem in representation theory of $p$-adic groups is the computation of the Casselman basis of Iwahori fixed vectors in the spherical principal series representations, which are dual to the intertwining integrals. We shall express the transition matrix $(m_{u,v})$ of the Casselman basis to another natural basis in terms of certain polynomials that are deformations of the Kazhdan–Lusztig R-polynomials. As an application we will obtain certain new functional equations for these transition matrices under the algebraic involution sending the residue cardinality $q$ to $q^{-1}$. We will also obtain a new proof of a surprising result of Nakasuji and Naruse that relates the matrix $(m_{u,v})$ to its inverse.
Large-scale sublinearly Lipschitz maps have been introduced by Yves Cornulier in order to precisely state his theorems about asymptotic cones of Lie groups. In particular, Sublinearly bi-Lipschitz Equivalences (SBE) are a weak variant of quasi-isometries, with the only requirement of still inducing bi-Lipschitz maps at the level of asymptotic cones. We focus here on hyperbolic metric spaces and study properties of boundary extensions of SBEs, reminiscent of quasi-Möbius (or quasisymmetric) mappings. We give a dimensional invariant of the boundary that allows to distinguish hyperbolic symmetric spaces up to SBE, answering a question of Druţu.
Let $G$ be a group acting properly by isometries and with a strongly contracting element on a geodesic metric space. Let $N$ be an infinite normal subgroup of $G$ and let $\unicode[STIX]{x1D6FF}_{N}$ and $\unicode[STIX]{x1D6FF}_{G}$ be the growth rates of $N$ and $G$ with respect to the pseudo-metric induced by the action. We prove that if $G$ has purely exponential growth with respect to the pseudo-metric, then $\unicode[STIX]{x1D6FF}_{N}/\unicode[STIX]{x1D6FF}_{G}>1/2$. Our result applies to suitable actions of hyperbolic groups, right-angled Artin groups and other CAT(0) groups, mapping class groups, snowflake groups, small cancellation groups, etc. This extends Grigorchuk’s original result on free groups with respect to a word metric and a recent result of Matsuzaki, Yabuki and Jaerisch on groups acting on hyperbolic spaces to a much wider class of groups acting on spaces that are not necessarily hyperbolic.
Braces were introduced by Rump in 2007 as a useful tool in the study of the set-theoretic solutions of the Yang–Baxter equation. In fact, several aspects of the theory of finite left braces and their applications in the context of the Yang–Baxter equation have been extensively investigated recently. The main aim of this paper is to introduce and study two finite brace theoretical properties associated with nilpotency, and to analyse their impact on the finite solutions of the Yang–Baxter equation.
How many generators and relations does $\text{SL}\,_{n}(\mathbb{F}_{q}[t,t^{-1}])$ need? In this paper we exhibit its explicit presentation with $9$ generators and $44$ relations. We investigate presentations of affine Kac–Moody groups over finite fields. Our goal is to derive finite presentations, independent of the field and with as few generators and relations as we can achieve. It turns out that any simply connected affine Kac–Moody group over a finite field has a presentation with at most 11 generators and 70 relations. We describe these presentations explicitly type by type. As a consequence, we derive explicit presentations of Chevalley groups $G(\mathbb{F}_{q}[t,t^{-1}])$ and explicit profinite presentations of profinite Chevalley groups $G(\mathbb{F}_{q}[[t]])$.
In this paper, we prove a combination theorem for a complex of relatively hyperbolic groups. It is a generalization of Martin’s (Geom. Topology18 (2014), 31–102) work for combination of hyperbolic groups over a finite MK-simplicial complex, where k ≤ 0.
We describe completely the link invariants constructed using Markov traces on the Yokonuma–Hecke algebras in terms of the linking matrix and the Hoste–Ocneanu–Millett–Freyd–Lickorish–Yetter–Przytycki–Traczyk (HOMFLY-PT) polynomials of sublinks.
Wreath products of nondiscrete locally compact groups are usually not locally compact groups, nor even topological groups. As a substitute introduce a natural extension of the wreath product construction to the setting of locally compact groups. Applying this construction, we disprove a conjecture of Trofimov, constructing compactly generated locally compact groups of intermediate growth without any open compact normal subgroup.
Let $T$ be a locally finite tree without vertices of degree $1$. We show that among the closed subgroups of $\text{Aut}(T)$ acting with a bounded number of orbits, the Chabauty-closure of the set of topologically simple groups is the set of groups without proper open subgroup of finite index. Moreover, if all vertices of $T$ have degree ${\geqslant}3$, then the set of isomorphism classes of topologically simple closed subgroups of $\text{Aut}(T)$ acting doubly transitively on $\unicode[STIX]{x2202}T$ carries a natural compact Hausdorff topology inherited from Chabauty. Some of our considerations are valid in the context of automorphism groups of locally finite connected graphs. Applications to Weyl-transitive automorphism groups of buildings are also presented.
Given a locally finite leafless tree $T$, various algebraic groups over local fields might appear as closed subgroups of $\operatorname{Aut}(T)$. We show that the set of closed cocompact subgroups of $\operatorname{Aut}(T)$ that are isomorphic to a quasi-split simple algebraic group is a closed subset of the Chabauty space of $\operatorname{Aut}(T)$. This is done via a study of the integral Bruhat–Tits model of $\operatorname{SL}_{2}$ and $\operatorname{SU}_{3}^{L/K}$, that we carry on over arbitrary local fields, without any restriction on the (residue) characteristic. In particular, we show that in residue characteristic $2$, the Tits index of simple algebraic subgroups of $\operatorname{Aut}(T)$ is not always preserved under Chabauty limits.
A canonical basis in the sense of Lusztig is a basis of a free module over a ring of Laurent polynomials that is invariant under a certain semilinear involution and is obtained from a fixed “standard basis” through a triangular base change matrix with polynomial entries whose constant terms equal the identity matrix. Among the better known examples of canonical bases are the Kazhdan–Lusztig basis of Iwahori–Hecke algebras (see Kazhdan and Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184), Lusztig’s canonical basis of quantum groups (see Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3(2) (1990), 447–498) and the Howlett–Yin basis of induced $W$-graph modules (see Howlett and Yin, Inducing W-graphs I, Math. Z. 244(2) (2003), 415–431; Inducing W-graphs II, Manuscripta Math. 115(4) (2004), 495–511). This paper has two major theoretical goals: first to show that having bases is superfluous in the sense that canonicalization can be generalized to nonfree modules. This construction is functorial in the appropriate sense. The second goal is to show that Howlett–Yin induction of $W$-graphs is well-behaved a functor between module categories of $W$-graph algebras that satisfies various properties one hopes for when a functor is called “induction,” for example transitivity and a Mackey theorem.
For an orientable surface S of finite topological type with genus g ≥ 3, we construct a finite set of curves whose union of iterated rigid expansions is the curve graph $\mathcal{C}$(S). The set constructed, and the method of rigid expansion, are closely related to Aramayona and Leiniger's finite rigid set in Aramayona and Leininger, J. Topology Anal.5(2) (2013), 183–203 and Aramayona and Leininger, Pac. J. Math.282(2) (2016), 257–283, and in fact a consequence of our proof is that Aramayona and Leininger's set also exhausts the curve graph via rigid expansions.
This paper examines a systematic method of constructing a pair of (inter-related) root systems for arbitrary Coxeter groups from a class of nonstandard geometric representations. This method can be employed to construct generalizations of root systems for a large family of linear groups generated by involutions. We then give a characterization of Coxeter groups, among these groups, in terms of such paired root systems. Furthermore, we use this method to construct and study the paired root systems for reflection subgroups of Coxeter groups.
This paper studies the combinatorics of lattice congruences of the weak order on a finite Weyl group $W$, using representation theory of the corresponding preprojective algebra $\unicode[STIX]{x1D6F1}$. Natural bijections are constructed between important objects including join-irreducible congruences, join-irreducible (respectively, meet-irreducible) elements of $W$, indecomposable $\unicode[STIX]{x1D70F}$-rigid (respectively, $\unicode[STIX]{x1D70F}^{-}$-rigid) modules and layers of $\unicode[STIX]{x1D6F1}$. The lattice-theoretically natural labelling of the Hasse quiver by join-irreducible elements of $W$ is shown to coincide with the algebraically natural labelling by layers of $\unicode[STIX]{x1D6F1}$. We show that layers of $\unicode[STIX]{x1D6F1}$ are nothing but bricks (or equivalently stones, or 2-spherical modules). The forcing order on join-irreducible elements of $W$ (arising from the study of lattice congruences) is described algebraically in terms of the doubleton extension order. We give a combinatorial description of indecomposable $\unicode[STIX]{x1D70F}^{-}$-rigid modules for type $A$ and $D$.
We present an algorithm for calculating the geometric intersection number of two multicurves on the $n$-punctured disk, taking as input their Dynnikov coordinates. The algorithm has complexity $O(m^{2}n^{4})$, where $m$ is the sum of the absolute values of the Dynnikov coordinates of the two multicurves. The main ingredient is an algorithm due to Cumplido for relaxing a multicurve.
The group of ${\mathcal{C}}^{1}$-diffeomorphisms of any sparse Cantor subset of a manifold is countable and discrete (possibly trivial). Thompson’s groups come out of this construction when we consider central ternary Cantor subsets of an interval. Brin’s higher-dimensional generalizations $nV$ of Thompson’s group $V$ arise when we consider products of central ternary Cantor sets. We derive that the ${\mathcal{C}}^{2}$-smooth mapping class group of a sparse Cantor sphere pair is a discrete countable group and produce this way versions of the braided Thompson groups.
If $k$ is a positive integer, a group $G$ is said to have the $FE_{k}$-property if for each element $g$ of $G$ there exists a normal subgroup of finite index $X(g)$ such that the subgroup $\langle g,x\rangle$ is nilpotent of class at most $k$ for all $x\in X(g)$. Thus, $FE_{1}$-groups are precisely those groups with finite conjugacy classes ($FC$-groups) and the aim of this paper is to extend properties of $FC$-groups to the case of groups with the $FE_{k}$-property for $k>1$. The class of $FE_{k}$-groups contains the relevant subclass $FE_{k}^{\ast }$, consisting of all groups $G$ for which to every element $g$ there corresponds a normal subgroup of finite index $Y(g)$ such that $\langle g,U\rangle$ is nilpotent of class at most $k$, whenever $U$ is a nilpotent subgroup of class at most $k$ of $Y(g)$.
We show that if a finitely generated group $G$ has a nonelementary WPD action on a hyperbolic metric space $X$, then the number of $G$-conjugacy classes of $X$-loxodromic elements of $G$ coming from a ball of radius $R$ in the Cayley graph of $G$ grows exponentially in $R$. As an application we prove that for $N\geq 3$ the number of distinct $\text{Out}(F_{N})$-conjugacy classes of fully irreducible elements $\unicode[STIX]{x1D719}$ from an $R$-ball in the Cayley graph of $\text{Out}(F_{N})$ with $\log \unicode[STIX]{x1D706}(\unicode[STIX]{x1D719})$ of the order of $R$ grows exponentially in $R$.