To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that if a hyperbolic group acts geometrically on a CAT(0) cube complex, then the induced boundary action is hyperfinite. This means that for a cubulated hyperbolic group, the natural action on its Gromov boundary is hyperfinite, which generalizes an old result of Dougherty, Jackson and Kechris for the free group case.
The word $w=[x_{i_{1}},x_{i_{2}},\ldots ,x_{i_{k}}]$ is a simple commutator word if $k\geq 2,i_{1}\neq i_{2}$ and $i_{j}\in \{1,\ldots ,m\}$ for some $m>1$. For a finite group $G$, we prove that if $i_{1}\neq i_{j}$ for every $j\neq 1$, then the verbal subgroup corresponding to $w$ is nilpotent if and only if $|ab|=|a||b|$ for any $w$-values $a,b\in G$ of coprime orders. We also extend the result to a residually finite group $G$, provided that the set of all $w$-values in $G$ is finite.
Let p be an odd prime and let G be a non-abelian finite p-group of exponent p2 with three distinct characteristic subgroups, namely 1, Gp and G. The quotient group G/Gp gives rise to an anti-commutative 𝔽p-algebra L such that the action of Aut (L) is irreducible on L; we call such an algebra IAC. This paper establishes a duality G ↔ L between such groups and such IAC algebras. We prove that IAC algebras are semisimple and we classify the simple IAC algebras of dimension at most 4 over certain fields. We also give other examples of simple IAC algebras, including a family related to the m-th symmetric power of the natural module of SL(2, 𝔽).
In this paper we introduce and study the conjugacy ratio of a finitely generated group, which is the limit at infinity of the quotient of the conjugacy and standard growth functions. We conjecture that the conjugacy ratio is 0 for all groups except the virtually abelian ones, and confirm this conjecture for certain residually finite groups of subexponential growth, hyperbolic groups, right-angled Artin groups and the lamplighter group.
Let G be a linear group such that for every g ∈ G there is a finite set ${\cal R}(g)$ with the property that for every x ∈ G all sufficiently long commutators [g, x, x, …, x] belong to ${\cal R}(g)$. We prove that G is finite-by-hypercentral.
We use a coarse version of the fundamental group first introduced by Barcelo, Kramer, Laubenbacher and Weaver to show that box spaces of finitely presented groups detect the normal subgroups used to construct the box space, up to isomorphism. As a consequence, we have that two finitely presented groups admit coarsely equivalent box spaces if and only if they are commensurable via normal subgroups. We also provide an example of two filtrations (Ni) and (Mi) of a free group F such that Mi > Ni for all i with [Mi:Ni] uniformly bounded, but with $\squ _{(N_i)}F$ not coarsely equivalent to $\squ _{(M_i)}F$. Finally, we give some applications of the main theorem for rank gradient and the first ℓ2 Betti number, and show that the main theorem can be used to construct infinitely many coarse equivalence classes of box spaces with various properties.
We define a natural lattice structure on all subsets of a finite root system that extends the weak order on the elements of the corresponding Coxeter group. For crystallographic root systems, we show that the subposet of this lattice induced by antisymmetric closed subsets of roots is again a lattice. We then study further subposets of this lattice that naturally correspond to the elements, the intervals, and the faces of the permutahedron and the generalized associahedra of the corresponding Weyl group. These results extend to arbitrary finite crystallographic root systems the recent results of G. Chatel, V. Pilaud, and V. Pons on the weak order on posets and its induced subposets.
We present a new test for studying asphericity and diagrammatic reducibility of group presentations. Our test can be applied to prove diagrammatic reducibility in cases where the classical weight test fails. We use this criterion to generalize results of J. Howie and S.M. Gersten on asphericity of LOTs and of Adian presentations, and derive new results on solvability of equations over groups. We also use our methods to investigate a conjecture of S.V. Ivanov related to Kaplansky's problem on zero divisors: we strengthen Ivanov's result for locally indicable groups and prove a weak version of the conjecture.
We construct a linear system nonlocal game which can be played perfectly using a limit of finite-dimensional quantum strategies, but which cannot be played perfectly on any finite-dimensional Hilbert space, or even with any tensor-product strategy. In particular, this shows that the set of (tensor-product) quantum correlations is not closed. The constructed nonlocal game provides another counterexample to the ‘middle’ Tsirelson problem, with a shorter proof than our previous paper (though at the loss of the universal embedding theorem). We also show that it is undecidable to determine if a linear system game can be played perfectly with a finite-dimensional strategy, or a limit of finite-dimensional quantum strategies.
This paper provides some evidence for conjectural relations between extensions of (right) weak order on Coxeter groups, closure operators on root systems, and Bruhat order. The conjecture focused upon here refines an earlier question as to whether the set of initial sections of reflection orders, ordered by inclusion, forms a complete lattice. Meet and join in weak order are described in terms of a suitable closure operator. Galois connections are defined from the power set of $W$ to itself, under which maximal subgroups of certain groupoids correspond to certain complete meet subsemilattices of weak order. An analogue of weak order for standard parabolic subsets of any rank of the root system is defined, reducing to the usual weak order in rank zero, and having some analogous properties in rank one (and conjecturally in general).
We study the geometry of infinitely presented groups satisfying the small cancellation condition $C^{\prime }(1/8)$, and introduce a standard decomposition (called the criss-cross decomposition) for the elements of such groups. Our method yields a direct construction of a linearly independent set of power continuum in the kernel of the comparison map between the bounded and the usual group cohomology in degree 2, without the use of free subgroups and extensions.
A space X is said to be Lipschitz 1-connected if every Lipschitz loop 𝛾 : S1 → X bounds a O (Lip(𝛾))-Lipschitz disk f : D2 → X. A Lipschitz 1-connected space admits a quadratic isoperimetric inequality, but it is unknown whether the converse is true. Cornulier and Tessera showed that certain solvable Lie groups have quadratic isoperimetric inequalities, and we extend their result to show that these groups are Lipschitz 1-connected.
In this paper, we complete the ADE-like classification of simple transitive 2-representations of Soergel bimodules in finite dihedral type, under the assumption of gradeability. In particular, we use bipartite graphs and zigzag algebras of ADE type to give an explicit construction of a graded (non-strict) version of all these 2-representations.
Moreover, we give simple combinatorial criteria for when two such 2-representations are equivalent and for when their Grothendieck groups give rise to isomorphic representations.
Finally, our construction also gives a large class of simple transitive 2-representations in infinite dihedral type for general bipartite graphs.
In this paper we construct an abelian category of mixed perverse sheaves attached to any realization of a Coxeter group, in terms of the associated Elias–Williamson diagrammatic category. This construction extends previous work of the first two authors, where we worked with parity complexes instead of diagrams, and we extend most of the properties known in this case to the general setting. As an application we prove that the split Grothendieck group of the Elias–Williamson diagrammatic category is isomorphic to the corresponding Hecke algebra, for any choice of realization.
A problem in representation theory of $p$-adic groups is the computation of the Casselman basis of Iwahori fixed vectors in the spherical principal series representations, which are dual to the intertwining integrals. We shall express the transition matrix $(m_{u,v})$ of the Casselman basis to another natural basis in terms of certain polynomials that are deformations of the Kazhdan–Lusztig R-polynomials. As an application we will obtain certain new functional equations for these transition matrices under the algebraic involution sending the residue cardinality $q$ to $q^{-1}$. We will also obtain a new proof of a surprising result of Nakasuji and Naruse that relates the matrix $(m_{u,v})$ to its inverse.
Large-scale sublinearly Lipschitz maps have been introduced by Yves Cornulier in order to precisely state his theorems about asymptotic cones of Lie groups. In particular, Sublinearly bi-Lipschitz Equivalences (SBE) are a weak variant of quasi-isometries, with the only requirement of still inducing bi-Lipschitz maps at the level of asymptotic cones. We focus here on hyperbolic metric spaces and study properties of boundary extensions of SBEs, reminiscent of quasi-Möbius (or quasisymmetric) mappings. We give a dimensional invariant of the boundary that allows to distinguish hyperbolic symmetric spaces up to SBE, answering a question of Druţu.
Let $G$ be a group acting properly by isometries and with a strongly contracting element on a geodesic metric space. Let $N$ be an infinite normal subgroup of $G$ and let $\unicode[STIX]{x1D6FF}_{N}$ and $\unicode[STIX]{x1D6FF}_{G}$ be the growth rates of $N$ and $G$ with respect to the pseudo-metric induced by the action. We prove that if $G$ has purely exponential growth with respect to the pseudo-metric, then $\unicode[STIX]{x1D6FF}_{N}/\unicode[STIX]{x1D6FF}_{G}>1/2$. Our result applies to suitable actions of hyperbolic groups, right-angled Artin groups and other CAT(0) groups, mapping class groups, snowflake groups, small cancellation groups, etc. This extends Grigorchuk’s original result on free groups with respect to a word metric and a recent result of Matsuzaki, Yabuki and Jaerisch on groups acting on hyperbolic spaces to a much wider class of groups acting on spaces that are not necessarily hyperbolic.
Braces were introduced by Rump in 2007 as a useful tool in the study of the set-theoretic solutions of the Yang–Baxter equation. In fact, several aspects of the theory of finite left braces and their applications in the context of the Yang–Baxter equation have been extensively investigated recently. The main aim of this paper is to introduce and study two finite brace theoretical properties associated with nilpotency, and to analyse their impact on the finite solutions of the Yang–Baxter equation.
How many generators and relations does $\text{SL}\,_{n}(\mathbb{F}_{q}[t,t^{-1}])$ need? In this paper we exhibit its explicit presentation with $9$ generators and $44$ relations. We investigate presentations of affine Kac–Moody groups over finite fields. Our goal is to derive finite presentations, independent of the field and with as few generators and relations as we can achieve. It turns out that any simply connected affine Kac–Moody group over a finite field has a presentation with at most 11 generators and 70 relations. We describe these presentations explicitly type by type. As a consequence, we derive explicit presentations of Chevalley groups $G(\mathbb{F}_{q}[t,t^{-1}])$ and explicit profinite presentations of profinite Chevalley groups $G(\mathbb{F}_{q}[[t]])$.
In this paper, we prove a combination theorem for a complex of relatively hyperbolic groups. It is a generalization of Martin’s (Geom. Topology18 (2014), 31–102) work for combination of hyperbolic groups over a finite MK-simplicial complex, where k ≤ 0.