To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, we will prove a full topological version of Popa’s measurable cocycle superrigidity theorem for full shifts [Popa, Cocycle and orbit equivalence superrigidity for malleable actions of $w$-rigid groups. Invent. Math.170(2) (2007), 243–295]. Let $G$ be a finitely generated group that has one end, undistorted elements and sub-exponential divergence function. Let $H$ be a target group that is complete and admits a compatible bi-invariant metric. Then, every Hölder continuous cocycle for the full shifts of $G$ with value in $H$ is cohomologous to a group homomorphism via a Hölder continuous transfer map. Using the ideas of Behrstock, Druţu, Mosher, Mozes and Sapir [Divergence, thick groups, and short conjugators. Illinois J. Math.58(4) (2014), 939–980; Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity. Math. Ann.344(3) (2009), 543–595; Divergence in lattices in semisimple Lie groups and graphs of groups. Trans. Amer. Math. Soc.362(5) (2010), 2451–2505; Tree-graded spaces and asymptotic cones of groups. Topology44(5) (2005), 959–1058], we show that the class of our acting groups is large including wide groups having undistorted elements and one-ended groups with strong thick of finite orders. As a consequence, irreducible uniform lattices of most of higher rank connected semisimple Lie groups, mapping class groups of $g$-genus surfaces with $p$-punches, $g\geq 2,p\geq 0$; Richard Thompson groups $F,T,V$; $\text{Aut}(F_{n})$, $\text{Out}(F_{n})$, $n\geq 3$; certain (two-dimensional) Coxeter groups; and one-ended right-angled Artin groups are in our class. This partially extends the main result in Chung and Jiang [Continuous cocycle superrigidity for shifts and groups with one end. Math. Ann.368(3–4) (2017), 1109–1132].
For a finite group $G$, define $l(G)=(\prod _{g\in G}o(g))^{1/|G|}/|G|$, where $o(g)$ denotes the order of $g\in G$. We prove that if $l(G)>l(A_{5}),l(G)>l(A_{4}),l(G)>l(S_{3}),l(G)>l(Q_{8})$ or $l(G)>l(C_{2}\times C_{2})$, then $G$ is solvable, supersolvable, nilpotent, abelian or cyclic, respectively.
We observe an inductive structure in a large class of Artin groups of finite real, complex and affine types and exploit this information to deduce the Farrell–Jones isomorphism conjecture for these groups.
The closure of a braid in a closed orientable surface Ʃ is a link in Ʃ × S1. We classify such closed surface braids up to isotopy and homeomorphism (with a small indeterminacy for isotopy of closed sphere braids), algebraically in terms of the surface braid group. We find that in positive genus, braids close to isotopic links if and only if they are conjugate, and close to homeomorphic links if and only if they are in the same orbit of the outer action of the mapping class group on the surface braid group modulo its centre.
Let $N_g^k$ be a nonorientable surface of genus g with k punctures. In the first part of this note, after introducing preliminary materials, we will give criteria for a chain of Dehn twists to bound a disc. Then, we will show that automorphisms of the mapping class groups map disc bounding chains of Dehn twists to such chains. In the second part of the note, we will introduce bounding pairs of Dehn twists and give an algebraic characterization for such pairs.
We present a complete list of groups $G$ and fields $F$ for which: (i) the group of normalized units $V(FG)$ of the group algebra $FG$ is locally nilpotent; (ii) the set of nontrivial nilpotent elements of $FG$ is finite and nonempty, and $V(FG)$ is an Engel group.
We enumerate factorizations of a Coxeter element in a well-generated complex reflection group into arbitrary factors, keeping track of the fixed space dimension of each factor. In the infinite families of generalized permutations, our approach is fully combinatorial. It gives results analogous to those of Jackson in the symmetric group and can be refined to encode a notion of cycle type. As one application of our results, we give a previously overlooked characterization of the poset of W-noncrossing partitions.
We construct total orders on the vertex set of an oriented tree. The orders are based only on up-down counts at the interior vertices and the edges along the unique geodesic from a given vertex to another.
As an application, we provide a short proof (modulo Bass–Serre theory) of Vinogradov’s result that the free product of left-orderable groups is left-orderable.
We introduce a new kind of action of a relatively hyperbolic group on a $\text{CAT}(0)$ cube complex, called a relatively geometric action. We provide an application to characterize finite-volume Kleinian groups in terms of actions on cube complexes, analogous to the results of Markovic and Haïssinsky in the closed case.
This paper continues the investigation of the structure of uncountable groups whose large subgroups are normal. Moreover, we describe the behaviour of uncountable groups in which every large subgroup is close to normal with the only obstruction of a finite section.
We prove a combination theorem for hyperbolic groups, in the case of groups acting on complexes displaying combinatorial features reminiscent of non-positive curvature. Such complexes include for instance weakly systolic complexes and C'(1/6) small cancellation polygonal complexes. Our proof involves constructing a potential Gromov boundary for the resulting groups and analyzing the dynamics of the action on the boundary in order to use Bowditch’s characterisation of hyperbolicity. A key ingredient is the introduction of a combinatorial property that implies a weak form of non-positive curvature, and which holds for large classes of complexes.
As an application, we study the hyperbolicity of groups obtained by small cancellation over a graph of hyperbolic groups.
We consider the finitely generated groups acting on a regular tree with almost prescribed local action. We show that these groups embed as cocompact irreducible lattices in some locally compact wreath products. This provides examples of finitely generated simple groups quasi-isometric to a wreath product $C\wr F$, where $C$ is a finite group and $F$ a non-abelian free group.
Let $\Sigma _{g,p}$ be the genus–g oriented surface with p punctures, with either g > 0 or p > 3. We show that $MCG(\Sigma _{g,p})/DT$ is acylindrically hyperbolic where DT is the normal subgroup of the mapping class group $MCG(\Sigma _{g,p})$ generated by $K^{th}$ powers of Dehn twists about curves in $\Sigma _{g,p}$ for suitable K.
Moreover, we show that in low complexity $MCG(\Sigma _{g,p})/DT$ is in fact hyperbolic. In particular, for 3g − 3 + p ⩽ 2, we show that the mapping class group $MCG(\Sigma _{g,p})$ is fully residually non-elementary hyperbolic and admits an affine isometric action with unbounded orbits on some $L^q$ space. Moreover, if every hyperbolic group is residually finite, then every convex-cocompact subgroup of $MCG(\Sigma _{g,p})$ is separable.
The aforementioned results follow from general theorems about composite rotating families, in the sense of [13], that come from a collection of subgroups of vertex stabilizers for the action of a group G on a hyperbolic graph X. We give conditions ensuring that the graph X/N is again hyperbolic and various properties of the action of G on X persist for the action of G/N on X/N.
Higher dimensional analogues of the modular group $\mathit{PSL}(2,\mathbb{Z})$ are closely related to hyperbolic reflection groups and Coxeter polyhedra with big symmetry groups. In this context, we develop a theory and dissection properties of ideal hyperbolic $k$-rectified regular polyhedra, which is of independent interest. As an application, we can identify the covolumes of the quaternionic modular groups with certain explicit rational multiples of the Riemann zeta value $\unicode[STIX]{x1D701}(3)$.
Let $W\subset \operatorname{GL}(V)$ be a complex reflection group and $\mathscr{A}(W)$ the set of the mirrors of the complex reflections in $W$. It is known that the complement $X(\mathscr{A}(W))$ of the reflection arrangement $\mathscr{A}(W)$ is a $K(\unicode[STIX]{x1D70B},1)$ space. For $Y$ an intersection of hyperplanes in $\mathscr{A}(W)$, let $X(\mathscr{A}(W)^{Y})$ be the complement in $Y$ of the hyperplanes in $\mathscr{A}(W)$ not containing $Y$. We hope that $X(\mathscr{A}(W)^{Y})$ is always a $K(\unicode[STIX]{x1D70B},1)$. We prove it in case of the monomial groups $W=G(r,p,\ell )$. Using known results, we then show that there remain only three irreducible complex reflection groups, leading to just eight such induced arrangements for which this $K(\unicode[STIX]{x1D70B},1)$ property remains to be proved.
The class of all monolithic (that is, subdirectly irreducible) groups belonging to a variety generated by a finite nilpotent group can be axiomatised by a finite set of elementary sentences.
Leighton’s graph covering theorem states that a pair of finite graphs with isomorphic universal covers have a common finite cover. We provide a new proof of Leighton’s theorem that allows generalisations; we prove the corresponding result for graphs with fins. As a corollary we obtain pattern rigidity for free groups with line patterns, building on the work of Cashen–Macura and Hagen–Touikan. To illustrate the potential for future applications, we give a quasi-isometric rigidity result for a family of cyclic doubles of free groups.
We prove that the class of reflexive asymptotic-$c_{0}$ Banach spaces is coarsely rigid, meaning that if a Banach space $X$ coarsely embeds into a reflexive asymptotic-$c_{0}$ space $Y$, then $X$ is also reflexive and asymptotic-$c_{0}$. In order to achieve this result, we provide a purely metric characterization of this class of Banach spaces. This metric characterization takes the form of a concentration inequality for Lipschitz maps on the Hamming graphs, which is rigid under coarse embeddings. Using an example of a quasi-reflexive asymptotic-$c_{0}$ space, we show that this concentration inequality is not equivalent to the non-equi-coarse embeddability of the Hamming graphs.
Let γn = [x1,…,xn] be the nth lower central word. Denote by Xnthe set of γn -values in a group G and suppose that there is a number m such that $|{g^{{X_n}}}| \le m$ for each g ∈ G. We prove that γn+1(G) has finite (m, n) -bounded order. This generalizes the much-celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite.
We show how to find higher generating families of subgroups, in the sense of Abels and Holz, for groups acting on Cohen–Macaulay complexes. We apply this to groups with a BN-pair to prove higher generation by parabolic and Levi subgroups and describe higher generating families of parabolic subgroups in Aut(Fn).