To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We examine 2-complexes $X$ with the property that for any compact connected $Y$, and immersion $Y\rightarrow X$, either $\unicode[STIX]{x1D712}(Y)\leqslant 0$ or $\unicode[STIX]{x1D70B}_{1}Y=1$. The mapping torus of an endomorphism of a free group has this property. Every irreducible 3-manifold with boundary has a spine with this property. We show that the fundamental group of any 2-complex with this property is locally indicable. We outline evidence supporting the conjecture that this property implies coherence. We connect the property to asphericity. Finally, we prove coherence for 2-complexes with a stricter form of this property. As a corollary, every one-relator group with torsion is coherent.
We shall define a general notion of dimension, and study groups and rings whose interpretable sets carry such a dimension. In particular, we deduce chain conditions for groups, definability results for fields and domains, and show that a pseudofinite $\widetilde {\mathfrak M}_c$-group of finite positive dimension contains a finite-by-abelian subgroup of positive dimension, and a pseudofinite group of dimension 2 contains a soluble subgroup of dimension 2.
It is shown that, for every prime number p, the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gp of all finite p-groups has the cardinality of the continuum. Furthermore, it is shown, in addition, that the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gsol of all finite solvable groups has also the cardinality of the continuum.
We show local rigidity of hyperbolic triangle groups generated by reflections in pairs of n-dimensional subspaces of $\mathbb {R}^{2n}$ obtained by composition of the geometric representation in $\mathsf {PGL}(2,\mathbb {R})$ with the diagonal embeddings into $\mathsf {PGL}(2n,\mathbb {R})$ and $\mathsf {PSp}^\pm (2n,\mathbb {R})$.
According to Mazhuga’s theorem, the fundamental group H of anyconnected surface, possibly except for the Klein bottle, is a retract of each finitely generated group containing H as a verbally closed subgroup. We prove that the Klein bottle group is indeed an exception but has a very close property.
To every dynamical system $(X,\varphi )$ over a totally disconnected compact space, we associate a left-orderable group $T(\varphi )$. It is defined as a group of homeomorphisms of the suspension of $(X,\varphi )$ which preserve every orbit of the suspension flow and act by dyadic piecewise linear homeomorphisms in the flow direction. We show that if the system is minimal, the group is simple and, if it is a subshift, then the group is finitely generated. The proofs of these two statements are short and elementary, providing straightforward examples of finitely generated simple left-orderable groups. We show that if the system is minimal, every action of the corresponding group on the circle has a fixed point. These constitute the first examples of finitely generated left-orderable groups with this fixed point property. We show that for every system $(X,\varphi )$, the group $T(\varphi )$ does not have infinite subgroups with Kazhdan's property $(T)$. In addition, we show that for every minimal subshift, the corresponding group is never finitely presentable. Finally, if $(X,\varphi )$ has a dense orbit, then the isomorphism type of the group $T(\varphi )$ is a complete invariant of flow equivalence of the pair $\{\varphi , \varphi ^{-1}\}$.
For a finite group $G$, let $d(G)$ denote the minimal number of elements required to generate $G$. In this paper, we prove sharp upper bounds on $d(H)$ whenever $H$ is a maximal subgroup of a finite almost simple group. In particular, we show that $d(H)\leqslant 5$ and that $d(H)\geqslant 4$ if and only if $H$ occurs in a known list. This improves a result of Burness, Liebeck and Shalev. The method involves the theory of crowns in finite groups.
We consider the sequence of powers of a positive definite function on a discrete group. Taking inspiration from random walks on compact quantum groups, we give several examples of situations where a cut-off phenomenon occurs for this sequence, including free groups and infinite Coxeter groups. We also give examples of absence of cut-off using free groups again.
Diagrammatic reducibility DR and its generalization, vertex asphericity VA, are combinatorial tools developed for detecting asphericity of a 2-complex. Here we present tests for a relative version of VA that apply to pairs of 2-complexes $(L,K)$, where K is a subcomplex of L. We show that a relative weight test holds for injective labeled oriented trees, implying that they are VA and hence aspherical. This strengthens a result obtained by the authors in 2017 and simplifies the original proof.
Let $\unicode[STIX]{x1D6E4}$ denote the mapping class group of the plane minus a Cantor set. We show that every action of $\unicode[STIX]{x1D6E4}$ on the circle is either trivial or semiconjugate to a unique minimal action on the so-called simple circle.
In this article, we will prove a full topological version of Popa’s measurable cocycle superrigidity theorem for full shifts [Popa, Cocycle and orbit equivalence superrigidity for malleable actions of $w$-rigid groups. Invent. Math.170(2) (2007), 243–295]. Let $G$ be a finitely generated group that has one end, undistorted elements and sub-exponential divergence function. Let $H$ be a target group that is complete and admits a compatible bi-invariant metric. Then, every Hölder continuous cocycle for the full shifts of $G$ with value in $H$ is cohomologous to a group homomorphism via a Hölder continuous transfer map. Using the ideas of Behrstock, Druţu, Mosher, Mozes and Sapir [Divergence, thick groups, and short conjugators. Illinois J. Math.58(4) (2014), 939–980; Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity. Math. Ann.344(3) (2009), 543–595; Divergence in lattices in semisimple Lie groups and graphs of groups. Trans. Amer. Math. Soc.362(5) (2010), 2451–2505; Tree-graded spaces and asymptotic cones of groups. Topology44(5) (2005), 959–1058], we show that the class of our acting groups is large including wide groups having undistorted elements and one-ended groups with strong thick of finite orders. As a consequence, irreducible uniform lattices of most of higher rank connected semisimple Lie groups, mapping class groups of $g$-genus surfaces with $p$-punches, $g\geq 2,p\geq 0$; Richard Thompson groups $F,T,V$; $\text{Aut}(F_{n})$, $\text{Out}(F_{n})$, $n\geq 3$; certain (two-dimensional) Coxeter groups; and one-ended right-angled Artin groups are in our class. This partially extends the main result in Chung and Jiang [Continuous cocycle superrigidity for shifts and groups with one end. Math. Ann.368(3–4) (2017), 1109–1132].
For a finite group $G$, define $l(G)=(\prod _{g\in G}o(g))^{1/|G|}/|G|$, where $o(g)$ denotes the order of $g\in G$. We prove that if $l(G)>l(A_{5}),l(G)>l(A_{4}),l(G)>l(S_{3}),l(G)>l(Q_{8})$ or $l(G)>l(C_{2}\times C_{2})$, then $G$ is solvable, supersolvable, nilpotent, abelian or cyclic, respectively.
We observe an inductive structure in a large class of Artin groups of finite real, complex and affine types and exploit this information to deduce the Farrell–Jones isomorphism conjecture for these groups.
The closure of a braid in a closed orientable surface Ʃ is a link in Ʃ × S1. We classify such closed surface braids up to isotopy and homeomorphism (with a small indeterminacy for isotopy of closed sphere braids), algebraically in terms of the surface braid group. We find that in positive genus, braids close to isotopic links if and only if they are conjugate, and close to homeomorphic links if and only if they are in the same orbit of the outer action of the mapping class group on the surface braid group modulo its centre.
Let $N_g^k$ be a nonorientable surface of genus g with k punctures. In the first part of this note, after introducing preliminary materials, we will give criteria for a chain of Dehn twists to bound a disc. Then, we will show that automorphisms of the mapping class groups map disc bounding chains of Dehn twists to such chains. In the second part of the note, we will introduce bounding pairs of Dehn twists and give an algebraic characterization for such pairs.
We present a complete list of groups $G$ and fields $F$ for which: (i) the group of normalized units $V(FG)$ of the group algebra $FG$ is locally nilpotent; (ii) the set of nontrivial nilpotent elements of $FG$ is finite and nonempty, and $V(FG)$ is an Engel group.
We enumerate factorizations of a Coxeter element in a well-generated complex reflection group into arbitrary factors, keeping track of the fixed space dimension of each factor. In the infinite families of generalized permutations, our approach is fully combinatorial. It gives results analogous to those of Jackson in the symmetric group and can be refined to encode a notion of cycle type. As one application of our results, we give a previously overlooked characterization of the poset of W-noncrossing partitions.
We construct total orders on the vertex set of an oriented tree. The orders are based only on up-down counts at the interior vertices and the edges along the unique geodesic from a given vertex to another.
As an application, we provide a short proof (modulo Bass–Serre theory) of Vinogradov’s result that the free product of left-orderable groups is left-orderable.
We introduce a new kind of action of a relatively hyperbolic group on a $\text{CAT}(0)$ cube complex, called a relatively geometric action. We provide an application to characterize finite-volume Kleinian groups in terms of actions on cube complexes, analogous to the results of Markovic and Haïssinsky in the closed case.
This paper continues the investigation of the structure of uncountable groups whose large subgroups are normal. Moreover, we describe the behaviour of uncountable groups in which every large subgroup is close to normal with the only obstruction of a finite section.